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Abstract

Consider an n x n matrix polynomial P(\) and a set ¥ consisting of k£ < n distinct
complex numbers. In this paper, a (weighted) spectral norm distance from P()) to the
matrix polynomials whose spectra include the specified set ¥, is defined and studied.
An upper and a lower bound for this distance are obtained, and an optimal perturba-
tion of P(\) associated to the upper bound is constructed. Numerical examples are
given to illustrate the efficiency of the proposed bounds.
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1 Introduction

Let A be an n X n complex matrix, and let M be the set of all n x n complex matrices
that have p € C as a multiple eigenvalue. Malyshev [14] obtained the following singular
value optimization characterization for the spectral norm distance from A to M:

. _ A_:U’I ’YITL
in |4 Burrgggcs%l([ SR,

where || - ||2 denotes the spectral matrix norm subordinate to the Euclidean vector norm,
and s; is the i-th singular value of the corresponding matrix sorted in a nonincreasing
order. Malyshev’s work can be considered as a solution to Wilkinson’s problem, that is, the
computation of the distance from a matrix A € C"*" with (only) simple eigenvalues to the
set of n xn matrices with multiple eigenvalues. This distance was introduced by Wilkinson
in [25], and some bounds for it were computed by Ruhe [19], Wilkinson [21H24] and
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Demmel [2]. Spectral norm distances from A to matrices that have a prescribed eigenvalue
of algebraic multiplicity 3, or any prescribed algebraic multiplicity, were considered by
Ikramov and Nazri [6] and Mengi [16], respectively. Gracia [5] and Lippert [I3] studied a
spectral norm distance from A to matrices with two prescribed eigenvalues, and obtained
a matrix closest to A having these two eigenvalues. Moreover, Kokabifar, Loghmani and
Karbassi [9] and Lippert [12] investigated (computationally and geometrically) a spectral
norm distance from A to matrices having k (< n) prescribed eigenvalues.

In 2008, Papathanasiou and Psarrakos [I7] generalized Malyshev’s results for the case
of matrix polynomials, in terms of a (weighted) spectral norm distance from an nxn matrix
polynomial P(A) to the matrix polynomials that have a prescribed u € C as a multiple
eigenvalue, obtaining an upper and a lower bound for this distance. Lately, motivated by
Mengi’s results in [16], Psarrakos [18] introduced the matrix polynomials

P(X) 0 0
yPM(\) P()\) 0
2
k—1 ) k—2 ) . )
] hp(k—l)()\) (z_2)!p(k—2)()\) - POV

where P(®)()\) denotes the i-th derivative of P(\) with respect to A. Then, he derived lower
and upper bounds for a distance from P(\) to the matrix polynomials with a prescribed
eigenvalue of a desired algebraic multiplicity by generalizing the methodology used in [17].
Recently, Kokabifar, Loghmani, Nazari and Karbassi [I0] extended the results of [I7] to
the case of two distinct eigenvalues, by replacing the first order derivative of P(\) in
F5[P(\);~] by a divided difference. Also, Karow and Mengi [8] studied systematically an
alternative distance from a given n X n matrix polynomial to matrix polynomials with a
specified number of eigenvalues at specified locations in the complex plane, deriving sin-
gular value optimization characterizations based on a Sylvester equation characterization.

In this paper, motivated by the literature above, we introduce and study a (weighted)
spectral norm distance from an n x n matrix polynomial P()) to the set of all matrix
polynomials with k£ < n prescribed distinct eigenvalues. In particular, we obtain an upper
and a lower bound for this distance, and construct an optimal perturbation associated to
the upper bound. Replacing the derivatives of P(\) in Fy, [P());~] by divided differences
formulas, extending necessary definitions and lemmas of [I0,12,[I7,18], and constructing
an appropriate perturbation of P(\) are the main ideas used herein. (Hence, this article
can be considered as a generalization of the results obtained in [I2] to the case of matrix
polynomials, and also as an extension of [I0,[I7,[I8] to the case of k arbitrary distinct
eigenvalues). In the next section, we review standard definitions concerning matrix poly-
nomials, and we also introduce some definitions which are necessary for the remainder.
In Section [3 we construct an admissible perturbation of P(A) by extending the methods



described in [TOJI718]. In Section @ we obtain our bounds, and in Section [}l we give two
numerical examples to illustrate the effectiveness of the proposed technique.

2 Preliminaries

In the last decades, the study of matrix polynomials, especially with regard to their spectral
analysis, has received much attention of several researchers and has met many applications.
Some basic references for the theory and applications of matrix polynomials are [4.[7)1T]
[15L20] and references therein.

For given A; € C"*" (j =0,1,...,m) and a complex variable A, we define the matriz
polynomial
PA) = ApA™ 4 Ay A" A+ Ag = ) AN (1)
j=0

If, for a scalar p € C and some nonzero vector v € C™, it holds that P(u)v = 0, then the
scalar p is called an eigenvalue of P(\) and the vector v is known as a (right) eigenvector
of P(X) corresponding to p. Similarly, a nonzero vector v € C" is known as a (left)
eigenvector of P(\) corresponding to p when v*P(u) = 0. The spectrum of P()\), denoted
by o(P), is the set of its eigenvalues. Throughout this paper, it is assumed that the
coefficient matrix A,, is nonsingular, which implies that the spectrum of P()\) contains
no more than mn distinct elements.

The multiplicity of an eigenvalue \g € o(P) as a root of the scalar polynomial det P()\)
is called the algebraic multiplicity of Ao, and the dimension of the null space of the (con-
stant) matrix P(\g) is known as the geometric multiplicity of \g. The algebraic multiplicity
of an eigenvalue is always greater than or equal to its geometric multiplicity. An eigenvalue
is called semisimple if its algebraic and geometric multiplicities are equal; otherwise, it is
known as defective. The singular values of P(\) are the nonnegative roots of the eigenvalue
functions of P(A\)*P(\), and we denote them by s1 (P (X)) > s2 (P (X)) > -+ > s, (P (N)).

Definition 2.1. Let P()\) be a matrix polynomial as in (1) and let A; € C™*" (5 =
0,1,...,m) be arbitrary matrices. Consider (additive) perturbations of the matrix poly-
nomial P(A) of the form

m
Q) = = (4;+4)) (2)
7=0
Also, for € > 0 and a set of given nonnegative weights w = {wo, w1, ..., wy}, with wy > 0,

define the class of admissible perturbed matrix polynomials
B(Pe,w) = {Q()\) asin @) : |Aj]l, <ew;j, j=0,1,...,m},

and the scalar polynomial w()\) = W, \™ + Wy 1 A™ L+ - 4w A + wp.



Definition 2.2. Let P()\) be a matrix polynomial as in (Il), and let a set of distinct
complex numbers ¥ = {u1, 2, ..., ux} (k < n) be given. The distance from P(\) to the
set of matrix polynomials whose spectra include ¥ is defined and denoted by

D, (P,Y) =min{e > 0:3Q(\) € B(P,e,w) such that ¥ C o(Q)} .

Definition 2.3. Consider a complex function f and k distinct scalars pq, po, ..., ui € C.
The divided difference at nodes i, pit1, .-, pive (1 <i<k—1, 1<t <k—1)is denoted
by f [wis ftis1,-- -, ti+t] and defined by the following recursive formula [3]:

S iy ity o pae—1] — f i1, a2, - - Mg

F s pigrs - pie] = — ;
A R

where f ;] = f (i) (i=1,2,...,k).

Definition 2.4. Suppose that P(\) is a matrix polynomial as in ([Il) and a set of distinct
complex numbers ¥ = {pu1, pa, ..., ur}t (k < n)is given. For any scalar v € C, define the
nk x nk matrix

P(Ml) 0 0

’YP[:U’LHQ] P(IU,Q) 0

F’Y [Pv E] = 72P[M17M27,U'3] ’)’P[/LQ’/,L:))] ce 0
L ’yk_lp[:ula"",uk] ’Yk_QP[HQw-- auk] P(:U'k) i

3 Construction of a perturbation

In this section, we construct an n x n matrix polynomial A, ()) such that the given set of
distinct scalars ¥ = {p1, po, ..., pur} (kK < n) is included in the spectrum of the perturbed
matrix polynomial Q,(A) = P(X\) + A,(X). Without loss of generality, hereafter we can
assume that the parameter 7 is real nonnegative [I8]. Moreover, for convenience, we set
p=nk—k+1.

Suppose now that v > 0, and consider the nonzero quantities

Hz‘,jz j ‘(: —0]',1‘), ’i,jE{l,Q,...,k}, 27&] (3)
i — Hj

Definition 3.1. Let

uy (%) v1(v)
u(y) = UQ@ , v(y) = UQEV) € C"  (uj(v),vj(y) €C”, j=1,2,...,k)
ug () vE(y)



be a pair of consistent left and right singular vectors of s, (F [P, X]), respectively. Define
the vectors

p—1 p—1

B1(y) =01(9), Bp(y) =vp(N+Y_ | (-1)° Op | vo—i(V)| (P=2,3,....k) (4
i=1 | j=p—i

and
p—1 [ p—l

i1(7) =wm (), () =up(y)+> |(=1) Ojp | vp—i(v) | (p=2,3,...,k). (5)
=1 j=p—1i

In the remainder of the paper, we assume that rank(V(v)) = k. It is also necessary
to observe that by the definition of the quantities 0; ; (7,5 € {1,2,...,k}, i # j) in @),
for all distinct i, j and ¢ in {1,2,...,k}, it follows

0,5 (0g,i — 0q,5) = 04, 0g5,  0i,j(0iq — 0j.q) = 0i,g0q5 = 0404 (7)
and
‘91'73'(‘9@'761 + ‘961,]') = inq eq,j’ ei,j(eq,i + 9]'761) = 91‘,(1 ‘93',(1 = ‘961,@' ‘961,]'- (8)

Using (@) and (8), one can verify that for every p = 2,3,...,k, the vectors 0,(7) in (@)
and 4,(7y) in (@) satisfy

P
o(v) = vp(7) = Op—1pOp-1(7) — (bp—2,p Op—2p—1) Op—2(7) — -+ — H 015 ] 91(7)
j=2
p—1 p
= vp(7) - Z H 0 | 0i (v) (9)
i=1 \j=i+1
and
P
Up(y) = up(v) = Op—1,p Up—1(7) = (Op—2,p Op—2,p—1) Up—2(7) — - H 015 | wa(v)
j=2
p—1 P
= up(y) — H O | wi(y) (10)
i=1 \j=i+1



~ Next we will define the desired perturbation of P(A) in terms of matrices U(v) and
V() in ([@). We consider the quantities

1 i~ ,
Qs = w ZO — | plw; | and By = % Zloci,s, i,s=1,2,...k, (11)
i= i=

(|4 | i
where wg > 0 and, by convention, we set Li — () and a;s = 1 whenever p; = 0. If
081, B2, ..., B, are nonzero, then we define the n X n matrix
N 1 1 1 N ¥
A’Y = _SP(F’Y [P’ E])U( )dlag ce o V(’Y) ) (12)
B B By

where V(fy)Jr denotes the Moore-Penrose pseudoinverse of V('y) Furthermore, we define
the matrices

k .
1 Hi )J .

— — | w; | Ay, 7=0,1,...,m, 13
ITEL ( 0 o ) y 19

and the n X n matrix polynomial
m
j=0

By straightforward computations, we see that the matrix polynomial A, (\) satisfies

m k _ j
A’Y(NS) = Z [%Z (ﬁ <‘ZZ‘> >w'uj] Ay = BsAy, s=1,2,... k. (14)

J=0

We also remark that the condition rank(V (7)) = k implies rank(V (7)) = k. As a conse-
quence, V(7)'V(v) = I, where Ij, denotes the k x k identity matrix.

Since u(7y), v(7) is a pair of left and right singular vectors of s, (F,[P, X]), by definition,
B[P EJu(y) = sp (B[P, E]) u(v),

or equivalently,

sp (Fy[P, X)) ua(y) = P(u)vi(y),

sp (Fy[P, X)) ua(y) = yPlur, pe]ui(y) + Pu2)va(y),

o (Fy[P,X])us(y) = ~*Plut, pa, pslvor(v) + vPlua, pslva(v) + Pus)vs(v), (15)
sp (B[P E)uk(y) = 7" 7"Plu,. s mlor(n) + 72 Plug, . pJoa(7) + -+ + P )o(7)



Recall that the vectors v1(7),02(7),...,0k(y) are defined as in () and (@) and the
vectors U1(7), ua(7y),...,ur(y) are defined as in (@) and ([I0). By expressing the divided
differences in system (I3 in terms of P(uq), P(u2), ..., P(pr), one can verify that on the
right-hand side of the p-th equation of system (I&l), the sum of all vectors multiplied by
P(pup) is equal to 0,(7). Moreover, moving all the remaining vectors to the left-hand side
of the p-th equation yields s, (Fy[P, X]) i,(7y). In particular, the following hold:

For p =1, 91(y) = v1(y) and u1(y) = uq(y). Thus, the first equation of system ([IH])
implies
Sp (B3[P, X]) i1 (y) = P(p1)01(7)-
For p = 2, the second equation of system ([T yields

sp (Fy[P X)) ua(y) = vP[ur, pelui(y) + Pu2)v2(7)
= b2 (P(u1) — P(p2) vi(y) + P(p2)va(y)
= P(uz) (v2(y) = 01201(7)) + 012P(p1)v1 (),

or equivalently,
$p (Fy[P, X)) (ua(y) — Or2u1(7)) = Ppz) (v2(y) — O1,201(7)) -

By @) and (@) (also, by @) and ([I0)), we have 02(y) = va(y) — 612v1(y) and da(y) =
ug(y) — 61 2u1(7y), respectively. As a consequence,

Sp (Fy [P, X]) 42(7) = P(p2)t2(7).
For the sake of induction, assume that for a given p € {2,3,...,k — 1}, it holds

By expressing the divided differences in the (p + 1)-th equation of system (I3 in terms of
P(u1), P(p2), - ., P(pp+1), and applying (@) and () (to construct appropriate products
of 0; ;’s), and @) and ([B]) (to construct v;(y)’s), straightforward computations yield

Sp (F5 [P, X]) upy1(7)

= VPP, ppr1]vr(Y) + P Pluay - ppr]va ()
+ o V2 Pp1; i, tip1]0p-1(Y) + VP, bp+1]0p(7) + Plttp1)vpia (7)

= 7011 (Plun, - pp) = Plpa, o)) 01(7) + 4P 2025101 (Pluas - i) = Plus, - ppra]) v2(7)
o+ [(Op—1,p410p—1,p) (P(ptp—1) — Pitp)) — (Op—1,p+10p,p+1) (P(1p) — Pptp+1))] vp—1(7)
+ Op.pt1 (P(ip) = Plip+1)) vp(7) + Plttpr1)vp+1(7)

p+1
Vp+1(7) = Opp+10p(7) — (Op—1,p+1 Op—1,p)0p—1(7) — - — (H 91,j) @1(’)’)]

j=2

= P(Nerl)

p+1
+ [ Oppr1 P (1p)0p(7) + (Op—1,p41 Op—1,p) P(pp—1)0p—1(7) + -+ + (H 91,]') P(Nl)@l(’}’)] :

Jj=2

7



By (@), it follows

p+1

Sp (F’Y[Pv X)) up-‘rl(’)’) - ep,p-i—lﬁp('Y) - (op—l,p—i—l Hp—l,p)ap—l(’)’) - H 01 1 ()
p+1

= P(Mp-i-l) 'Up—l—l(’Y) - Hp,p-l-l{)p(')’) - (Hp—l,p-i-l Qp—l,p){)p—l(')’) - H Hl,j @1(’7) )
j=2

and by (@) and (I0), it is apparent that

Sp (Fy[P, X]) tip11(7) = P(ptp41)0p41(7)-

Hence, it is obtained that

Recalling the definition of n x n matrices A, in [I2) and Ay o, Ay 1,..., Ay in ([3),
we define the matrix polynomial

Qv()‘) =P(}) Z Aj +Aw : (17)
7=0

Then, by ([[4]), we have that for every i =1,2,... k,

Qy (i) Di(y) = P () 0:() + Ay (1) 95(7)
= 5, (B[P, X]) 4 () + BiAy0i(7)

. 1
= s BRI ut)+ i (s (BRT) 1) aly
= 0.

As a consequence, if rank(V (7)) = k (recall that all 31, B2, ..., Bk in (1) are nonzero), then
1, f2, - ., pii; are eigenvalues of the matrix polynomial Q. (\) in ([IZ) with 01(7),02(7),
., Uk (7) as their associated eigenvectors, respectively.

The next result follows immediately.

Theorem 3.2. Consider an n X n matriz polynomial P(X) as in ({@) and a given set of
k < n distinct complex numbers ¥ = {u1, po,...,ux}, and suppose that the quantities
B1, P2, ..., Bk in (1) are nonzero. For every v > 0 such that rank(V (7)) = k, the scalars
Wi, f2, - - ., pig are eigenvalues of the matriz polynomial Q(N) in (I7), with corresponding

eigenvectors 01(7y),02(7), ..., 0x(7y), respectively.



Remark 3.3. For the case k = 2, by [I0, Section 2] (see also [I7, Section 5]), if
the matrix P[u1,p2] is nonsingular and 7, > 0 is a point where the singular value
Son—1(Fy[P, {1, po}]) attains its maximum value, then rank(V(vy)) = 2(= k). But
for the case k > 2, as mentioned in [I§], it is not easy to obtain conditions ensuring
rank(V(y)) = k. However, in our experiments, the condition rank(V (7)) = k holds typi-
cally.

Remark 3.4. At this time, we have no clear understanding of the case where 53 = 0
for some s € {1,2,...,k} (even for k = 2). Describing fully the set ¥ = {1, 2, ..., pur}
(k < n) of desired eigenvalues and the set of weights w = {wg,w1,...,w,} which lead to
Bs = 0 is still an open problem. However, the condition 51, s, ..., Bk # 0 appears to hold
generically in our experiments.

We conclude this section by providing a matrix Ag € C™*" so that the prescribed
scalars are eigenvalues of P(\) + Ag. For i = 1,2,... k, let @;,0; € C" be a pair of left
and right singular vectors of P(u;) corresponding to o; = s,(P(1;)), respectively. If the

vectors 01, U9, ..., U are linearly independent, then we define the constant matrix
Ao = — @y ag - Gy |diag {o1,09,... 0%} [01 T2 --- T3]

and observe that [y ¥y -+ 0] [81 Dy -+ 0] = Ix. Therefore, the matrix polynomial
Qo(\) = P(N\) + Ag(A) = ApA™ + Ay N1 4 -+ Agd + (Ag + Ap), (18)

lies on the boundary of B (P, %, w) and satisfies
Qo(pi)0; = P(pq)0; + Ao(pi)0; = o3ty — o3ty = 0, i =1,2,... k.

Hence, the scalars pq, po, ..., ux are eigenvalues of the matrix polynomial Qg(\) in (IS)
with corresponding eigenvectors v1,vg, . .., Uk, respectively.

Proposition 3.5. Let u;,0; € C" be a pair of left and right singular vectors of P(;)
corresponding to o; = s,(P(p;)), respectively, for every i = 1,2,...,k. If the vectors
01,02, ...,0 are linearly independent, then the matriz polynomial Qo(\) in (I8) lies on

the boundary of B (P, %, w) and has 1, po, ..., pr as eigenvalues.

4 Bounds for D,(P,Y)

The construction of the perturbed matrix polynomial Q- ()) in (IT) yields immediately an
upper bound for the distance D,,(P, ). In particular, from (I3]) we have

1

k
N
A, < (—
vl < 3 2\ D

>||A7||2, j=0,1,...,m,



F

where the n x n matrix A, is defined as in (I2)). Consequently, if all scalars f1, o, . ..

in ([I) are nonzero, then for any > 0 such that rank(V (7)) = k, it follows

%Z () 189l

Next, we compute a lower bound for D, (P,Y).

calculating this lower bound, the condition rank(V'(y)) = k is not necessary.

Lemma 4.1. Suppose that P(\) is an nxn matriz polynomial as in ({), and pi, po, . . .

are k < n distinct eigenvalues of P(X). Then, for every v > 0, s, (F,[P,X]) = 0 (recall

that p =nk —k+1).

Proof. Since p1, pa, . .

not necessarily linearly independent) vectors vy, vs, ...

1,2,...

» Br

(19)

It is worth mentioning that for

) Mk

., pu are distinct eigenvalues of P()\), there exist k nonzero (but

defined by (), the nk x nk matrix F, [P, ¥] can be written in the form

P,y =

01,2(P(p1
91,3[91,213(#1) -

P(Ml)
) = P(u2))

(01,24 02.3)P(p2) + 02,3P(u3)]

*

P(us2)

02,3(P(p2) —

*

, v satisfying P(up;)v; = 0, i =
,k. Recalling Definition 24 and the quantities 6;; (4,7 € {1,2,...

kY, 1 # 9)

0 0

0 0
P(ps) 0

" P(,;ik)

As a consequence, denoting the (4, j)-th n x n block of this matrix by F; ;, it follows that
Fij=0;:(Fi-1j— Fijy1), 1<j<i<k (20)

Now recall () and (8), and consider the k (nonzero) linearly independent vectors

v
01,211
01,201 311

H b1 ) i

k
[161;]mn

Jj=2

It is apparent that

k—1
[ 02; | va
=3

k
[ 02; |12
=3

0
Vo
02,312

10

Vg1

| Ok—1,kVk—1 |

(21)



P(u) 0 0 0 0 0
F2’1 P(Mg) 0 0 0 0
F31  F35  P(us) 0 D = : —0
: : : : 0 0
Fy1  Fio  Frs P(p) Vk P ()
and (applying [20) for i = k and j =k — 1)
[ P(u) 0 0 o 1 o 1 T 0 T
Foq Plp2) 0 0 : :
F31  F35  P(us) 0 0 — 0 — 0.
: : : : Vg1 P(pr—1)ve—1
| Fu1 Fro  Figs P(ug) | [ Or—16vk—1 | | Op—1.6P(ph—1)Vk—1 |
For any s=k — 2,k —3,...,1, consider the vector
_ 0 _
P(u) 0 0 - 0 0
Fop Plpe) 0 .- 0 Vs
ws — F3,1 F3,2 P(,LL3) e 0 95,5+1V5
. . (95,5+195,s+2) Vs
Fyq Fro  Fis P(pr) :
k
H os,j Vg
L \J=s+! i
_ 0 _
0
P(ps)vs

— [Fs-i-l,s + es,s-‘rlP(NS-i-l)] Vs
[Fs+2,s + 95,5+1Fs+2,s+1 + (9575+195,s+2) P(N5+2)] Vg

k-1
IT 6s;) Fep—1 +

Vs

j=s+1 j=s+1

k
I1 95,j> P(pr)

Fk,s + os,erle,erl + -+ <

By applying ([20) (to express all the entries of ¥ in terms of P(us), P(tst1),- .-, P(uk)),
and () and (8)) (to construct appropriate products of 6 ;, j = s+1,5+2,..., k), straight-

11



forward computations yield

0
P(ps)vs
s = (05,511 (P(ps) — P(ptss1)) + s s11P(prs1)] vs
(Os,5+2(Fs+1,s — Fst2,541) + (0s,5+10511,542) (P(ps+1) — Pps+2)) + (0554105 542) Plpst2)| vs

Vs

Os 1(Fr—1,5s — Frs41) + < H 0 ,g> Orp—16(P(pr—1) — P(ur)) + < ﬁ 95,j> P(ur)

Jj=s+1 Jj=s+1
0

0
P(us)vs
s erIP( s)
[(0s,54+10s,54+2) P(ps) + (Os,s+10s 41,542 — Os,542(0s,s41 + Os11,54+2)) P(ts+1) + (0s,s42(0s,s+1 + Os41,542) — Os,s+10s11,s+2)P(pst2)|Vs

k—1
05,605, 1—1)(Fr—2,s = Fr—1,641) = (05,1054 1,8) (Fr—1,541 — Fr,s42) + -+ < I1 195,]') Op 1,6 (P(pr—1) — P(pr)) + < IT ¢ ]> P(Nk):| Vs
=t j=st1 i

0

0
P(ps)vs
= Hs,s+1P(Ms)Vs = 0.
(95,5+195,s+2)P(N5)V5

<, ﬁ 957j> P(NS)VS
L Jj=s+1 a

Thus, the k linearly independent vectors in (ZI)) lie in the null space of matrix F [P, X].
This means that the rank of F, [P, Y] is less than or equal to kn —k = p—1, and the proof
is complete. ]

The next lemma yields a lower bound for D,,(P,Y). We define the nonnegative quan-
tities

WMJZwWMLi:Lz”wh

'U’erl‘
NzaﬂHl Zw] |ﬂz ﬂz+1|

i=1,2,...,k—1,

12



and (recursively)

@ [y - ooy fit—1) + T [t 1y -+ - s fii]

@ [liy it 1, -+ s igt] = , =1,2,...,k—2,t=2,3,
|1i — fhit]
and the k x k matrix
[ @ 1] 0 0 ]
Y@ [p1, p2] @ [ 0
F,|w,X] = v [, pa, 3] Y@ [p2; ps] 0
| Y [ ey k] YR (g, s, k] e @ (]

Lemma 4.2. Suppose that the matriz polynomial Q(X\) = P(X)+A(N) belongs to B(P, e, w).
If k < n distinct scalars py, pa, ..., ux € C are eigenvalues of Q(XN), then for any v > 0,

c SP (FW [P’ E])
T Fy [ X,

Proof. Since the k distinct scalars pq, p2, . . ., 1x are eigenvalues of Q(A) = P(A) + A(N),
Lemma [Tl implies that s, (F, [@,%]) = 0. As a consequence, the Weyl inequalities for
singular values (e.g., see Corollary 5.1 of [1]), applied to F, [Q,X] = F, [P, X] + F, [A,X],
yield s, (F, [P, X]) < ||Fy [A, Y]], for any v > 0. Keeping in mind that A()) is of the

m .
form A(XN) = > A;N with Aj € C™*" satisfying [|Ajl, < ew; (j =0,1,...,m), the rest
=0

J_
of the proof is devoted to establish the inequality
1Ey [AE]ll, < e[ Fy [w, X, -

It is easy to see that
1A )y < S8l il < > wy sl = ew (ul) = e ], i =1,2,....k,
j=0 j=0
and

1] — Mngl
Hi — i1

m
HA[,UIMH%FI]HQ SZHA]HQ <ew [lu’iaui+1]a = 152)°°°)k_1'

=0

For the sake of induction, we assume that for a given t € {1,2,...,k — 2}, it holds

IA [pis i1, - pivtlllo < € [y i1 -+ oy pit], 1=1,2,... k=t

13



Then it follows
A [pis prig1s - s pigelllp + A (i1 piga, -5 pigera]lly

IA [, prigts - oo pirera]lly <

|1i — pites]
< E® (s Bt - - Pitt] + €00 [Hi1, Pit2, - - o s Bipe]
N |1i — ittr]
= tw [:U’Z'a Hit1ss - aNithJrl]

for every i = 1,2,...,k —t — 1. Hence, we obtain
WA [ty ooy privt)llo < € [y oy pive], t=0,1,...,k—1, i=1,2,... k-t

As in the proof of Theorem 2.4 of [I§], we can consider a unit vector

€1
T3
r=| [ |eCm (zyeC i=1,2,...,k)
Tk
such that
2 2
155 [AE; = (15 [A Xzl
= 1A (1) @115 + [7A [u1, p2] 21 + A (u2) 223
K 2
i=1 2
< (ew [m])? laalls + (vew [pa, p2))? l21ll3 + (e [12])? |22 l3
2 2
+2v (ew [, po]) (ew [w2]) |21 ll5 lz2lly + - - - + (ew [1k])” lzkll
w[ﬂl] 0 0 ||=’EIH
yw [M17M2] w[l@] 0 ||$2H2
g2 V2w [, pia, i3] v (2, 3] e 0 ?
k—1 ' k—2 ' ) : lzklly
Y w[ﬂlaﬂ2a~-~;ﬂk] Y W[M%N&"'auk] W[Mk]
2
< Py [w, 35
This completes the proof. O

Keeping in mind Definition 2.2} the above lemma yields a lower bound for D, (P, ),
namely,

Dy(P,%) > sp (£ [P, X))

215 .5, #2)
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It will be convenient to denote the lower bound in [22]) by S (P, ¥, v) and the upper
bound in [@9) by By (P,%,7), ie.,

sp (F [P, %))
1 (oo, 2]l

and (recalling the n x n matrix A, defined by ([I2))

6low(P7 27'7) - (23)

Bup(P,5,7) = kZ( ) 184 24

Our main results are summarized in the following theorem.

Theorem 4.3. Consider an n X n matriz polynomial P(X) as in ({@) and a given set of
k <mn distinct complex numbers ¥ = {1, pia, ..., fi}-

(a) For any v > 0, Dy(P,X) > Biow(P, %, 7).

(b) If the quantities 1, B2,..., Bk in (1) are nonzero, then for any v > 0 such that
rank(V (7)) =k, Dy(P, %) < Bup(P,3,7) and the matriz polynomial Q~(v) in (17)
lies on the boundary of B(P, Byp(P,%,7),w).

In the next remark, we give an upper and a lower bound for a spectral norm distance
from an n x n matrix A to the set of all matrices with k prescribed eigenvalues. This issue
is explained in [9,[12] in detail.

Remark 4.4. Consider the standard eigenproblem of a matrix A € C"*™. In this
special case, we set P(A\) = IXN — A and w = {wp, w1} = {1,0}. Thus, for every i =
1,2,...,k, ww) =w(|u|) =wo and @ [;,...,p] =0 for every j ={i+1,i+2,...,k}.
Consequently, the matrix F, [ww, X| becomes the identity matrix /; and the lower bound in
@3) turns into Biw (P, X, ) = s, (Fy [P, %]). Furthermore, it is easy to see that o; s = 1
and (s = 1 for every i,s = 1,2,..., k. Therefore, the upper bound in (24]) becomes

Bun(P.Z:7) = 1851, = s (B [P.ZN) |0 (0 V)
Moreover, the associated perturbed matrix polynomial Q- () in (I7) is now given by

Qy(N) = PO +8,(0) = PO) + &y = 1A = (A4 5, (B [PEN T (1) V(o)')  (25)
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5 Numerical examples

In this section, the validity of the results in the previous sections is verified by two nu-
merical examples. The lower and upper bounds for the distance D,,(P,Y¥) are computed
by applying the procedures described in Section M and by using the MATLAB function
fminbnd which finds a minimum of a function of one variable within a fixed interval. As it
was mentioned in Remark B3] the condition rank(V(v)) = k appears to be generic when
~v > 0. All computations were performed in MATLAB with 16 significant digits; however,
for simplicity, all numerical results are shown with 4 decimal places.

Example 5.1. Consider the 3 x 3 matrix polynomial

79 -2 9 -3 3 -5 0 5
PAN=|0 -2 0 | M+| -5 8 10 |A+]| -2 -2 10 |,
6 —3 -1 4 -3 0 19 2

whose spectrum is o(P) = {76.9807,0.9284,0.3034, —1.0283, —0.9421 +0.9281 i}. Let w =
{wp, wy,we} = {12.0731,14.8523,11.7991} be the set of weights which are the norms of the
coefficient matrices, and suppose that the set of desired eigenvalues is ¥ = {1 +1, —2, 3}.
By applying the MATLAB function fminbnd, it appears that the function S,,(P, {1 +
i,—2,3},7) (v > 0) attains its minimum at v = 1.9656, that is,

Bup(P, {1 +1i,—2,3},1.9656) = 1.0090,

and the function B, (P, {1+i, —2,3},7) (7 > 0) attains its maximum at vy = 5.9606-1075,
that is,

Brow (P, {1 +1i,—2,3},5.9606 - 10~°) = 0.1320.

In Figure [ the graphs of the upper bound (P, {1 +1i,—2,3},v) and the lower bound
Biow (P, {1 +1,—2,3},7) are plotted for v € (0, 10]. Also, for the perturbation

—1.5506 + 0.58521 —3.6805 — 3.75601 3.2843 — 2.45501
Avrggss (A\) = | —1.3951+1.12871 0.8130 —3.6071i  1.4666 + 0.25511 | A2
—4.9524 + 1.3272i —0.1817 — 0.1712i —0.1517 — 2.55231

[ —1.0045 + 0.6941i —3.2991 —2.0307i 1.9114 — 2.3391i
+ | —0.7966 + 1.06501 —0.0602 —2.72331 1.0938 — 0.07841 | A
| —3.3045 +1.82951 —0.1603 — 0.09011 —0.5623 — 1.79771i

[ —2.1779 — 1.0042i 0.1345 — 7.6081i  5.8658 + 0.8927 i
+ | —2.5802 —0.29201 4.5439 — 2.82481 1.2263 4 1.77091
—6.3971 — 3.75741 —0.0080 — 0.36121 2.4770 — 2.7481 1

the perturbed matrix polynomial (Q1.9656(A) = P(\) + A1.9656(A) lies on the boundary of
the set B(P, Byp(P, {1 +1,—2,3},1.9656),w) = B(P,1.0090, w) and has 3 in its spectrum.

16



Upper Bound
— = = Lower Bound

15

0.5

_________

Fig 1: The graphs of Biow(P, {1 +1,—2,3},7) and Bup(P, {1 +1,—2,3},7).

It is worth mentioning that the discussion at the end of Section [3 yields the pertur-
bation

0.0673 +0.01581 0.0656 — 0.01941  0.0060 — 0.0079 1
Ag(\) = Ag = | 1.2669 — 0.18781 0.0412 +0.2304i  —0.6315 + 0.09401 | - 10°.
0.3092 — 0.13681 —0.1210 4 0.16781 —0.2397 4 0.0684 i

The perturbed matrix polynomial Qo(A) = P(A)+Ag lies on the boundary of B(P, 12.5337, w)
and has ¥ in its spectrum.

Our second example illustrates the applicability of Remark [£41

Example 5.2. Consider the Frank matrix of order 12,

12 11 10 9 8 7 6 5 4 3 2 1
11 11 10 9 8 7 6 5 4 3 2 1
0 10 10 9 8 7 6 5 4 3 2 1
0 0 9 9 8 76 5 4 3 21
0 0 0 8 8 76 5 4 3 2 1

o |0 0 0077654321

2=10 0 0 006 6 5 43 2 1]/
0 0 0 0O0O0O5 5 43 21
0 0 0 00O0O0 4 4 3 21
0 0 0 00O0O0O0 33 21
0 0 0 00O0O0O0O0Z2 21
|0 0 0 00000O0GO0 1 1|

which has some small ill-conditioned eigenvalues. Suppose that the set of the desired

17



0.012

Upper Bound
— = = Lower Bound

0.011

0.008 -

0.006 -

0.004 -

0.002

Fig 2: The graphs of Biow(P,{0.1,-0.1,0.11,—0.11} ,~) and By, (P, {0.1,—0.1,0.11, —0.11} , 7).

eigenvalues is ¥ = {0.1,—0.1,0.11, —0.1i}. The optimal (spectral norm) distance from Fj,
to the set of matrices that have ¥ in their spectrum is 6.9 - 10~* [12]. We consider the
linear matrix polynomial P(\) = Al;2 — Fio, and the weights wy = 1 and w; = 0 (i.e.,
we consider perturbations of the standard eigenproblem of matrix Fj2). The MATLAB
function fminbnd applied to the difference

Bup(P,{0.1,—0.1,0.11, —0.11} ,) — Biow(P, {0.1,—0.1,0.11, —0.1i} , y)
yields v = 2.5730. Then, according to the discussion in Remark L4l we have

Biow (P, %, 2.5730) = 6.4007 - 1074 9.-107* =D, (P, %)

< 6.
< 8616710 = B,, (P,%,2.5730)..

Also, it is easy to see that the spectrum of the perturbed linear matrix polynomial
Q~(A) in [23) includes the given set ¥. In Figure [ the graphs of the upper bound
Bup(P,{0.1,-0.1,0.11, —0.11} ,7) and the lower bound fj, (P, {0.1,-0.1,0.1i,-0.11} ,~)
are plotted for v € (0, 5].

6 Concluding remarks

In this article, a spectral norm distance from an n x n matrix polynomial P()\) to the
n X n matrix polynomials that have k£ < n distinct complex numbers as eigenvalues is
introduced and studied. An upper and a lower bound for this distance are obtained.
Furthermore, a perturbation of P(\) with the given scalars as eigenvalues and associated

18



to the upper bound is constructed under two conditions (namely, rank(V (vy)) = k and
b1, B2, ..., Br # 0) which appear in our experiments to hold generically. The tightness of
these bounds is illustrated by two numerical examples. Overall, the proposed methodology
can be considered as an extension of the results in [5L10L121131[17I8].

A question that arises in a natural way, is what one can say about the case where
some of the desired eigenvalues are multiple. In this case, it seems that it is necessary
to replace some of the divided differences in the nk x nk matrix F,[P, 3] (see Definition
24) by derivatives of the matrix polynomial P(A). The mixture of divided differences and
derivatives in the definition of F,[P,X] yields several computational difficulties. More-
over, the new perturbations and bounds will be of different type than the perturbation
constructed in Section Bl and the bounds obtained in Section @l As a consequence, this
problem requires the development of a modified technique based on the combination of
the methodology given herein and the methods established in [9,[12L[17,[I8]; this will be
the subject of a future work.

Acknowledgments. We acknowledge with thanks an anonymous referee for useful com-
ments and suggestions.
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