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Abstract

Consider an n×n matrix polynomial P (λ) and a set Σ consisting of k ≤ n distinct
complex numbers. In this paper, a (weighted) spectral norm distance from P (λ) to the
matrix polynomials whose spectra include the specified set Σ, is defined and studied.
An upper and a lower bound for this distance are obtained, and an optimal perturba-
tion of P (λ) associated to the upper bound is constructed. Numerical examples are
given to illustrate the efficiency of the proposed bounds.

Keywords: Matrix polynomial, Eigenvalue, Perturbation, Singular value.

AMS Classification: 15A18, 65F35.

1 Introduction

Let A be an n × n complex matrix, and let M be the set of all n × n complex matrices
that have µ ∈ C as a multiple eigenvalue. Malyshev [14] obtained the following singular
value optimization characterization for the spectral norm distance from A to M:

min
B∈M

‖A−B‖2 = max
γ≥0

s2n−1

([

A− µI γIn
0 A− µI

])

,

where ‖ · ‖2 denotes the spectral matrix norm subordinate to the Euclidean vector norm,
and si is the i-th singular value of the corresponding matrix sorted in a nonincreasing
order. Malyshev’s work can be considered as a solution to Wilkinson’s problem, that is, the
computation of the distance from a matrix A ∈ C

n×n with (only) simple eigenvalues to the
set of n×nmatrices with multiple eigenvalues. This distance was introduced by Wilkinson
in [25], and some bounds for it were computed by Ruhe [19], Wilkinson [21–24] and
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Demmel [2]. Spectral norm distances from A to matrices that have a prescribed eigenvalue
of algebraic multiplicity 3, or any prescribed algebraic multiplicity, were considered by
Ikramov and Nazri [6] and Mengi [16], respectively. Gracia [5] and Lippert [13] studied a
spectral norm distance from A to matrices with two prescribed eigenvalues, and obtained
a matrix closest to A having these two eigenvalues. Moreover, Kokabifar, Loghmani and
Karbassi [9] and Lippert [12] investigated (computationally and geometrically) a spectral
norm distance from A to matrices having k (≤ n) prescribed eigenvalues.

In 2008, Papathanasiou and Psarrakos [17] generalized Malyshev’s results for the case
of matrix polynomials, in terms of a (weighted) spectral norm distance from an n×nmatrix
polynomial P (λ) to the matrix polynomials that have a prescribed µ ∈ C as a multiple
eigenvalue, obtaining an upper and a lower bound for this distance. Lately, motivated by
Mengi’s results in [16], Psarrakos [18] introduced the matrix polynomials

Fk [P (λ); γ] =

















P (λ) 0 · · · 0

γP (1)(λ) P (λ) · · · 0
γ2

2! P
(2)(λ) γP (1)(λ) · · · 0
...

...
. . .

...
γk−1

(k−1)!P
(k−1)(λ) γk−2

(k−2)!P
(k−2)(λ) · · · P (λ)

















, k = 1, 2, . . . ,

where P (i)(λ) denotes the i-th derivative of P (λ) with respect to λ. Then, he derived lower
and upper bounds for a distance from P (λ) to the matrix polynomials with a prescribed
eigenvalue of a desired algebraic multiplicity by generalizing the methodology used in [17].
Recently, Kokabifar, Loghmani, Nazari and Karbassi [10] extended the results of [17] to
the case of two distinct eigenvalues, by replacing the first order derivative of P (λ) in
F2 [P (λ); γ] by a divided difference. Also, Karow and Mengi [8] studied systematically an
alternative distance from a given n × n matrix polynomial to matrix polynomials with a
specified number of eigenvalues at specified locations in the complex plane, deriving sin-
gular value optimization characterizations based on a Sylvester equation characterization.

In this paper, motivated by the literature above, we introduce and study a (weighted)
spectral norm distance from an n × n matrix polynomial P (λ) to the set of all matrix
polynomials with k ≤ n prescribed distinct eigenvalues. In particular, we obtain an upper
and a lower bound for this distance, and construct an optimal perturbation associated to
the upper bound. Replacing the derivatives of P (λ) in Fk [P (λ); γ] by divided differences
formulas, extending necessary definitions and lemmas of [10, 12, 17, 18], and constructing
an appropriate perturbation of P (λ) are the main ideas used herein. (Hence, this article
can be considered as a generalization of the results obtained in [12] to the case of matrix
polynomials, and also as an extension of [10, 17, 18] to the case of k arbitrary distinct
eigenvalues). In the next section, we review standard definitions concerning matrix poly-
nomials, and we also introduce some definitions which are necessary for the remainder.
In Section 3, we construct an admissible perturbation of P (λ) by extending the methods
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described in [10,17,18]. In Section 4, we obtain our bounds, and in Section 5, we give two
numerical examples to illustrate the effectiveness of the proposed technique.

2 Preliminaries

In the last decades, the study of matrix polynomials, especially with regard to their spectral
analysis, has received much attention of several researchers and has met many applications.
Some basic references for the theory and applications of matrix polynomials are [4, 7, 11,
15,20] and references therein.

For given Aj ∈ C
n×n (j = 0, 1, . . . ,m) and a complex variable λ, we define the matrix

polynomial

P (λ) = Amλ
m +Am−1λ

m−1 + · · ·+A1λ+A0 =

m
∑

j=0

Ajλ
j. (1)

If, for a scalar µ ∈ C and some nonzero vector υ ∈ C
n, it holds that P (µ)υ = 0, then the

scalar µ is called an eigenvalue of P (λ) and the vector υ is known as a (right) eigenvector
of P (λ) corresponding to µ. Similarly, a nonzero vector ν ∈ C

n is known as a (left)
eigenvector of P (λ) corresponding to µ when ν∗P (µ) = 0. The spectrum of P (λ), denoted
by σ(P ), is the set of its eigenvalues. Throughout this paper, it is assumed that the
coefficient matrix Am is nonsingular, which implies that the spectrum of P (λ) contains
no more than mn distinct elements.

The multiplicity of an eigenvalue λ0 ∈ σ(P ) as a root of the scalar polynomial detP (λ)
is called the algebraic multiplicity of λ0, and the dimension of the null space of the (con-
stant) matrix P (λ0) is known as the geometric multiplicity of λ0. The algebraic multiplicity
of an eigenvalue is always greater than or equal to its geometric multiplicity. An eigenvalue
is called semisimple if its algebraic and geometric multiplicities are equal; otherwise, it is
known as defective. The singular values of P (λ) are the nonnegative roots of the eigenvalue
functions of P (λ)∗P (λ), and we denote them by s1 (P (λ)) ≥ s2 (P (λ)) ≥ · · · ≥ sn (P (λ)).

Definition 2.1. Let P (λ) be a matrix polynomial as in (1) and let ∆j ∈ C
n×n (j =

0, 1, . . . ,m) be arbitrary matrices. Consider (additive) perturbations of the matrix poly-
nomial P (λ) of the form

Q(λ) = P (λ) + ∆(λ) =

m
∑

j=0

(Aj +∆j)λ
j . (2)

Also, for ε ≥ 0 and a set of given nonnegative weights w = {w0, w1, . . . , wm}, with w0 > 0,
define the class of admissible perturbed matrix polynomials

B(P, ε, w) =
{

Q(λ) as in (2) : ‖∆j‖2 ≤ εwj , j = 0, 1, . . . ,m
}

,

and the scalar polynomial w(λ) = wmλ
m + wm−1λ

m−1 + · · ·+ w1λ+ w0.
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Definition 2.2. Let P (λ) be a matrix polynomial as in (1), and let a set of distinct
complex numbers Σ = {µ1, µ2, . . . , µk} (k ≤ n) be given. The distance from P (λ) to the
set of matrix polynomials whose spectra include Σ is defined and denoted by

Dw(P,Σ) = min {ε ≥ 0 : ∃Q(λ) ∈ B(P, ε, w) such that Σ ⊆ σ(Q)} .

Definition 2.3. Consider a complex function f and k distinct scalars µ1, µ2, . . . , µk ∈ C.
The divided difference at nodes µi, µi+1, . . . , µi+t (1 ≤ i ≤ k− 1, 1 ≤ t ≤ k− i) is denoted
by f [µi, µi+1, . . . , µi+t] and defined by the following recursive formula [3]:

f [µi, µi+1, . . . , µi+t] =
f [µi, µi+1, . . . , µi+t−1]− f [µi+1, µi+2, . . . , µi+t]

µi − µi+t
,

where f [µi] = f (µi) (i = 1, 2, . . . , k).

Definition 2.4. Suppose that P (λ) is a matrix polynomial as in (1) and a set of distinct
complex numbers Σ = {µ1, µ2, . . . , µk} (k ≤ n) is given. For any scalar γ ∈ C, define the
nk × nk matrix

Fγ [P,Σ] =















P (µ1) 0 · · · 0
γP [µ1, µ2] P (µ2) · · · 0

γ2P [µ1, µ2, µ3] γP [µ2, µ3] · · · 0
...

...
. . .

...
γk−1P [µ1, . . . , µk] γk−2P [µ2, . . . , µk] · · · P (µk)















.

3 Construction of a perturbation

In this section, we construct an n×n matrix polynomial ∆γ(λ) such that the given set of
distinct scalars Σ = {µ1, µ2, . . . , µk} (k ≤ n) is included in the spectrum of the perturbed
matrix polynomial Qγ(λ) = P (λ) + ∆γ(λ). Without loss of generality, hereafter we can
assume that the parameter γ is real nonnegative [18]. Moreover, for convenience, we set
ρ = nk − k + 1.

Suppose now that γ > 0, and consider the nonzero quantities

θi,j =
γ

µi − µj
(= −θj,i), i, j ∈ {1, 2, . . . , k}, i 6= j. (3)

Definition 3.1. Let

u(γ) =











u1(γ)
u2(γ)

...
uk(γ)











, v(γ) =











v1(γ)
v2(γ)

...
vk(γ)











∈ C
nk (uj(γ), vj(γ) ∈ C

n, j = 1, 2, . . . , k)
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be a pair of consistent left and right singular vectors of sρ (Fγ [P,Σ]), respectively. Define
the vectors

v̂1(γ) = v1(γ), v̂p(γ) = vp(γ)+

p−1
∑

i=1



(−1)i





p−1
∏

j=p−i

θj,p



 vp−i(γ)



 (p = 2, 3, . . . , k) (4)

and

û1(γ) = u1(γ), ûp(γ) = up(γ)+

p−1
∑

i=1



(−1)i





p−1
∏

j=p−i

θj,p



up−i(γ)



 (p = 2, 3, . . . , k). (5)

Define also the n× k matrices

Û(γ) = [ û1(γ) û2(γ) · · · ûk(γ) ] , V̂ (γ) = [ v̂1(γ) v̂2(γ) · · · v̂k(γ) ] (6)

and V (γ) = [ v1(γ) v2(γ) · · · vk(γ) ] .

In the remainder of the paper, we assume that rank(V (γ)) = k. It is also necessary
to observe that by the definition of the quantities θi,j (i, j ∈ {1, 2, . . . , k}, i 6= j) in (3),
for all distinct i, j and q in {1, 2, . . . , k}, it follows

θi,j(θq,i − θq,j) = θq,i θq,j, θi,j(θi,q − θj,q) = θi,q θq,j = θq,i θj,q (7)

and

θi,j(θi,q + θq,j) = θi,q θq,j, θi,j(θq,i + θj,q) = θi,q θj,q = θq,i θq,j. (8)

Using (7) and (8), one can verify that for every p = 2, 3, . . . , k, the vectors v̂p(γ) in (4)
and ûp(γ) in (5) satisfy

v̂p(γ) = vp(γ)− θp−1,p v̂p−1(γ)− (θp−2,p θp−2,p−1) v̂p−2(γ)− · · · −





p
∏

j=2

θ1,j



 v̂1(γ)

= vp (γ)−

p−1
∑

i=1





p
∏

j=i+1

θi,j



 v̂i (γ) (9)

and

ûp(γ) = up(γ)− θp−1,p ûp−1(γ)− (θp−2,p θp−2,p−1) ûp−2(γ)− · · · −





p
∏

j=2

θ1,j



 û1(γ)

= up(γ)−

p−1
∑

i=1





p
∏

j=i+1

θi,j



 ûi(γ). (10)
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Next we will define the desired perturbation of P (λ) in terms of matrices Û(γ) and
V̂ (γ) in (6). We consider the quantities

αi,s =
1

w (|µi|)

m
∑

j=0

(

(

µ̄i

|µi|

)j

µjswj

)

and βs =
1

k

k
∑

i=1

αi,s, i, s = 1, 2, . . . , k, (11)

where w0 > 0 and, by convention, we set µ̄i

|µi|
= 0 and αi,s = 1 whenever µi = 0. If

β1, β2, . . . , βk are nonzero, then we define the n× n matrix

∆γ = −sρ(Fγ [P,Σ])Û(γ) diag

{

1

β1
,
1

β2
, . . . ,

1

βk

}

V̂ (γ)†, (12)

where V̂ (γ)† denotes the Moore-Penrose pseudoinverse of V̂ (γ). Furthermore, we define
the matrices

∆γ,j =
1

k

k
∑

i=1

(

1

w (|µi|)

(

µ̄i

|µi|

)j

wj

)

∆γ , j = 0, 1, . . . ,m, (13)

and the n× n matrix polynomial

∆γ (λ) =

m
∑

j=0

∆γ,jλ
j .

By straightforward computations, we see that the matrix polynomial ∆γ (λ) satisfies

∆γ (µs) =
m
∑

j=0

[

1

k

k
∑

i=1

(

1

w (|µi|)

(

µ̄i

|µi|

)j
)

wjµ
j
s

]

∆γ = βs∆γ , s = 1, 2, . . . , k. (14)

We also remark that the condition rank(V (γ)) = k implies rank(V̂ (γ)) = k. As a conse-
quence, V̂ (γ)†V̂ (γ) = Ik, where Ik denotes the k × k identity matrix.

Since u(γ), v(γ) is a pair of left and right singular vectors of sρ (Fγ [P,Σ]), by definition,

Fγ [P,Σ]v(γ) = sρ (Fγ [P,Σ])u(γ),

or equivalently,

sρ (Fγ [P,Σ]) u1(γ) = P (µ1)v1(γ),

sρ (Fγ [P,Σ]) u2(γ) = γP [µ1, µ2]v1(γ) + P (µ2)v2(γ),

sρ (Fγ [P,Σ]) u3(γ) = γ2P [µ1, µ2, µ3]v1(γ) + γP [µ2, µ3]v2(γ) + P (µ3)v3(γ), (15)

...
...

...

sρ (Fγ [P,Σ])uk(γ) = γk−1P [µ1, . . . , µk]v1(γ) + γk−2P [µ2, . . . , µk]v2(γ) + · · ·+ P (µk)vk(γ).
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Recall that the vectors v̂1(γ), v̂2(γ), . . . , v̂k(γ) are defined as in (4) and (9) and the
vectors û1(γ), û2(γ), . . . , ûk(γ) are defined as in (5) and (10). By expressing the divided
differences in system (15) in terms of P (µ1), P (µ2), . . . , P (µk), one can verify that on the
right-hand side of the p-th equation of system (15), the sum of all vectors multiplied by
P (µp) is equal to v̂p(γ). Moreover, moving all the remaining vectors to the left-hand side
of the p-th equation yields sρ (Fγ [P,Σ]) ûp(γ). In particular, the following hold:

For p = 1, v̂1(γ) = v1(γ) and û1(γ) = u1(γ). Thus, the first equation of system (15)
implies

sρ (Fγ [P,Σ]) û1(γ) = P (µ1)v̂1(γ).

For p = 2, the second equation of system (15) yields

sρ (Fγ [P,Σ]) u2(γ) = γP [µ1, µ2]v1(γ) + P (µ2)v2(γ)

= θ1,2 (P (µ1)− P (µ2)) v1(γ) + P (µ2)v2(γ)

= P (µ2) (v2(γ)− θ1,2v1(γ)) + θ1,2P (µ1)v1(γ),

or equivalently,

sρ (Fγ [P,Σ]) (u2(γ)− θ1,2u1(γ)) = P (µ2) (v2(γ)− θ1,2v1(γ)) .

By (4) and (5) (also, by (9) and (10)), we have v̂2(γ) = v2(γ) − θ1,2v1(γ) and û2(γ) =
u2(γ)− θ1,2u1(γ), respectively. As a consequence,

sρ (Fγ [P,Σ]) û2(γ) = P (µ2)v̂2(γ).

For the sake of induction, assume that for a given p ∈ {2, 3, . . . , k − 1}, it holds

sρ (Fγ [P,Σ]) ûi(γ) = P (µi)v̂i(γ), i = 1, 2, . . . , p. (16)

By expressing the divided differences in the (p+1)-th equation of system (15) in terms of
P (µ1), P (µ2), . . . , P (µp+1), and applying (7) and (8) (to construct appropriate products
of θi,j’s), and (4) and (5) (to construct v̂i(γ)’s), straightforward computations yield

sρ (Fγ [P,Σ])up+1(γ)

= γpP [µ1, . . . , µp+1]v1(γ) + γp−1P [µ2, . . . , µp+1]v2(γ)

+ · · ·+ γ2P [µp−1, µp, µp+1]vp−1(γ) + γP [µp, µp+1]vp(γ) + P (µp+1)vp+1(γ)

= γp−1θ1,p+1 (P [µ1, . . . , µp]− P [µ2, . . . , µp+1]) v1(γ) + γp−2θ2,p+1 (P [µ2, . . . , µp]− P [µ3, . . . , µp+1]) v2(γ)

+ · · ·+ [(θp−1,p+1θp−1,p)(P (µp−1)− P (µp))− (θp−1,p+1θp,p+1)(P (µp)− P (µp+1))] vp−1(γ)

+ θp,p+1 (P (µp)− P (µp+1)) vp(γ) + P (µp+1)vp+1(γ)

= P (µp+1)



vp+1(γ)− θp,p+1v̂p(γ)− (θp−1,p+1 θp−1,p)v̂p−1(γ)− · · · −





p+1
∏

j=2

θ1,j



 v̂1(γ)





+



θp,p+1P (µp)v̂p(γ) + (θp−1,p+1 θp−1,p)P (µp−1)v̂p−1(γ) + · · ·+





p+1
∏

j=2

θ1,j



P (µ1)v̂1(γ)



 .
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By (16), it follows

sρ (Fγ [P,Σ])



up+1(γ)− θp,p+1ûp(γ)− (θp−1,p+1 θp−1,p)ûp−1(γ)− · · · −





p+1
∏

j=2

θ1,j



 û1(γ)





= P (µp+1)



vp+1(γ)− θp,p+1v̂p(γ)− (θp−1,p+1 θp−1,p)v̂p−1(γ)− · · · −





p+1
∏

j=2

θ1,j



 v̂1(γ)



 ,

and by (9) and (10), it is apparent that

sρ (Fγ [P,Σ]) ûp+1(γ) = P (µp+1)v̂p+1(γ).

Hence, it is obtained that

sρ (Fγ [P,Σ]) ûi(γ) = P (µi) v̂i(γ), i = 1, 2, . . . , k.

Recalling the definition of n×n matrices ∆γ in (12) and ∆γ,0,∆γ,1, . . . ,∆γ,m in (13),
we define the matrix polynomial

Qγ(λ) = P (λ) + ∆γ(λ) =

m
∑

j=0

(Aj +∆γ,j)λ
j. (17)

Then, by (14), we have that for every i = 1, 2, . . . , k,

Qγ (µi) v̂i(γ) = P (µi) v̂i(γ) + ∆γ (µi) v̂i(γ)

= sρ (Fγ [P,Σ]) ûi(γ) + βi∆γ v̂i(γ)

= sρ (Fγ [P,Σ]) ûi(γ) + βi

(

−sρ (Fγ [P,Σ])
1

βi

)

ûi(γ)

= 0.

As a consequence, if rank(V (γ)) = k (recall that all β1, β2, . . . , βk in (11) are nonzero), then
µ1, µ2, . . . , µk are eigenvalues of the matrix polynomial Qγ(λ) in (17) with v̂1(γ), v̂2(γ),
. . . , v̂k(γ) as their associated eigenvectors, respectively.

The next result follows immediately.

Theorem 3.2. Consider an n × n matrix polynomial P (λ) as in (1) and a given set of
k ≤ n distinct complex numbers Σ = {µ1, µ2, . . . , µk}, and suppose that the quantities
β1, β2, . . . , βk in (11) are nonzero. For every γ > 0 such that rank(V (γ)) = k, the scalars
µ1, µ2, . . . , µk are eigenvalues of the matrix polynomial Qγ(λ) in (17), with corresponding
eigenvectors v̂1(γ), v̂2(γ), . . . , v̂k(γ), respectively.
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Remark 3.3. For the case k = 2, by [10, Section 2] (see also [17, Section 5]), if
the matrix P [µ1, µ2] is nonsingular and γ∗ > 0 is a point where the singular value
s2n−1(Fγ [P, {µ1, µ2}]) attains its maximum value, then rank(V (γ∗)) = 2 (= k). But
for the case k > 2, as mentioned in [18], it is not easy to obtain conditions ensuring
rank(V (γ)) = k. However, in our experiments, the condition rank(V (γ)) = k holds typi-
cally.

Remark 3.4. At this time, we have no clear understanding of the case where βs = 0
for some s ∈ {1, 2, . . . , k} (even for k = 2). Describing fully the set Σ = {µ1, µ2, . . . , µk}
(k ≤ n) of desired eigenvalues and the set of weights w = {w0, w1, . . . , wm} which lead to
βs = 0 is still an open problem. However, the condition β1, β2, . . . , βk 6= 0 appears to hold
generically in our experiments.

We conclude this section by providing a matrix ∆0 ∈ C
n×n so that the prescribed

scalars are eigenvalues of P (λ) + ∆0. For i = 1, 2, . . . , k, let ũi, ṽi ∈ C
n be a pair of left

and right singular vectors of P (µi) corresponding to σi = sn(P (µi)), respectively. If the
vectors ṽ1, ṽ2, . . . , ṽk are linearly independent, then we define the constant matrix

∆0 = − [ ũ1 ũ2 · · · ũk ] diag {σ1, σ2, . . . , σk} [ ṽ1 ṽ2 · · · ṽk ]
†

and observe that [ ṽ1 ṽ2 · · · ṽk ]
† [ ṽ1 ṽ2 · · · ṽk ] = Ik. Therefore, the matrix polynomial

Q0(λ) = P (λ) + ∆0(λ) = Amλ
m +Am−1λ

m−1 + · · ·+A1λ+ (A0 +∆0) , (18)

lies on the boundary of B
(

P,
‖∆0‖2
w0

, w
)

and satisfies

Q0(µi)ṽi = P (µi)ṽi +∆0(µi)ṽi = σiũi − σiũi = 0, i = 1, 2, . . . , k.

Hence, the scalars µ1, µ2, . . . , µk are eigenvalues of the matrix polynomial Q0(λ) in (18)
with corresponding eigenvectors ṽ1, ṽ2, . . . , ṽk, respectively.

Proposition 3.5. Let ũi, ṽi ∈ C
n be a pair of left and right singular vectors of P (µi)

corresponding to σi = sn(P (µi)), respectively, for every i = 1, 2, . . . , k. If the vectors
ṽ1, ṽ2, . . . , ṽk are linearly independent, then the matrix polynomial Q0(λ) in (18) lies on

the boundary of B
(

P,
‖∆0‖2
w0

, w
)

and has µ1, µ2, . . . , µk as eigenvalues.

4 Bounds for Dw(P,Σ)

The construction of the perturbed matrix polynomial Qγ(λ) in (17) yields immediately an
upper bound for the distance Dw(P,Σ). In particular, from (13) we have

‖∆γ,j‖2 ≤
wj

k

k
∑

i=1

(

1

w (|µi|)

)

‖∆γ‖2 , j = 0, 1, . . . ,m,

9



where the n× n matrix ∆γ is defined as in (12). Consequently, if all scalars β1, β2, . . . , βk
in (11) are nonzero, then for any γ > 0 such that rank(V (γ)) = k, it follows

Dw(P,Σ) ≤
1

k

k
∑

i=1

(

1

w (|µi|)

)

‖∆γ‖2 . (19)

Next, we compute a lower bound for Dw(P,Σ). It is worth mentioning that for
calculating this lower bound, the condition rank(V (γ)) = k is not necessary.

Lemma 4.1. Suppose that P (λ) is an n×n matrix polynomial as in (1), and µ1, µ2, . . . , µk
are k ≤ n distinct eigenvalues of P (λ). Then, for every γ > 0, sρ (Fγ [P,Σ]) = 0 (recall
that ρ = nk − k + 1).

Proof. Since µ1, µ2, . . . , µk are distinct eigenvalues of P (λ), there exist k nonzero (but
not necessarily linearly independent) vectors ν1, ν2, . . . , νk satisfying P (µi)νi = 0, i =
1, 2, . . . , k. Recalling Definition 2.4 and the quantities θi,j (i, j ∈ {1, 2, . . . , k}, i 6= j)
defined by (3), the nk × nk matrix Fγ [P,Σ] can be written in the form

Fγ [P,Σ] =













P (µ1) 0 0 · · · 0
θ1,2(P (µ1)− P (µ2)) P (µ2) 0 · · · 0

θ1,3[θ1,2P (µ1)− (θ1,2 + θ2,3)P (µ2) + θ2,3P (µ3)] θ2,3(P (µ2)− P (µ3)) P (µ3) · · · 0
...

...
...

. . .
...

∗ ∗ ∗ · · · P (µk)













.

As a consequence, denoting the (i, j)-th n×n block of this matrix by Fi,j , it follows that

Fi,j = θj,i(Fi−1,j − Fi,j+1), 1 ≤ j < i ≤ k. (20)

Now recall (7) and (8), and consider the k (nonzero) linearly independent vectors






























ν1
θ1,2ν1

θ1,2θ1,3ν1
...

(

k−1
∏

j=2
θ1,j

)

ν1
(

k
∏

j=2
θ1,j

)

ν1































,































0
ν2

θ2,3ν2
...

(

k−1
∏

j=3
θ2,j

)

ν2
(

k
∏

j=3
θ2,j

)

ν2































, . . . ,



















0
0
...
0

νk−1

θk−1,kνk−1



















,



















0
0
...
0
0
νk



















. (21)

It is apparent that
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













P (µ1) 0 0 · · · 0
F2,1 P (µ2) 0 · · · 0
F3,1 F3,2 P (µ3) · · · 0
...

...
...

. . .
...

Fk,1 Fk,2 Fk,3 · · · P (µk)





























0
0
...
0
νk















=















0
0
...
0

P (µk)νk















= 0

and (applying (20) for i = k and j = k − 1)















P (µ1) 0 0 · · · 0
F2,1 P (µ2) 0 · · · 0
F3,1 F3,2 P (µ3) · · · 0
...

...
...

. . .
...

Fk,1 Fk,2 Fk,3 · · · P (µk)





























0
...
0

νk−1

θk−1,kνk−1















=















0
...
0

P (µk−1)νk−1

θk−1,kP (µk−1)νk−1















= 0.

For any s = k − 2, k − 3, . . . , 1, consider the vector

ψs =















P (µ1) 0 0 · · · 0
F2,1 P (µ2) 0 · · · 0
F3,1 F3,2 P (µ3) · · · 0
...

...
...

. . .
...

Fk,1 Fk,2 Fk,3 · · · P (µk)

















































0
...
0
νs

θs,s+1νs
(θs,s+1θs,s+2) νs

...
(

k
∏

j=s+1

θs,j

)

νs



































=



































0
...
0

P (µs)νs
[Fs+1,s + θs,s+1P (µs+1)] νs

[Fs+2,s + θs,s+1Fs+2,s+1 + (θs,s+1θs,s+2)P (µs+2)] νs
...

[

Fk,s + θs,s+1Fk,s+1 + · · ·+

(

k−1
∏

j=s+1

θs,j

)

Fk,k−1 +

(

k
∏

j=s+1

θs,j

)

P (µk)

]

νs



































.

By applying (20) (to express all the entries of ψs in terms of P (µs), P (µs+1), . . . , P (µk)),
and (7) and (8) (to construct appropriate products of θs,j, j = s+1, s+2, . . . , k), straight-
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forward computations yield

ψs =



































0
...
0

P (µs)νs
[θs,s+1(P (µs)− P (µs+1)) + θs,s+1P (µs+1)] νs

[θs,s+2(Fs+1,s − Fs+2,s+1) + (θs,s+1θs+1,s+2) (P (µs+1)− P (µs+2)) + (θs,s+1θs,s+2)P (µs+2)] νs
...

[

θs,k(Fk−1,s − Fk,s+1) + · · ·+

(

k−1
∏

j=s+1

θs,j

)

θk−1,k(P (µk−1)− P (µk)) +

(

k
∏

j=s+1

θs,j

)

P (µk)

]

νs



































=

































0
...
0

P (µs)νs
θs,s+1P (µs)νs

[(θs,s+1θs,s+2)P (µs) + (θs,s+1θs+1,s+2 − θs,s+2(θs,s+1 + θs+1,s+2))P (µs+1) + (θs,s+2(θs,s+1 + θs+1,s+2) − θs,s+1θs+1,s+2)P (µs+2)]νs
...

[

(θs,kθs,k−1)(Fk−2,s − Fk−1,s+1)− (θs,kθs+1,k)(Fk−1,s+1 − Fk,s+2) + · · ·+

(

k−1
∏

j=s+1

θs,j

)

θk−1,k(P (µk−1)− P (µk)) +

(

k
∏

j=s+1

θs,j

)

P (µk)

]

νs

































=



































0
...
0

P (µs)νs
θs,s+1P (µs)νs

(θs,s+1θs,s+2)P (µs)νs
...

(

k
∏

j=s+1

θs,j

)

P (µs)νs



































= 0.

Thus, the k linearly independent vectors in (21) lie in the null space of matrix Fγ [P,Σ].
This means that the rank of Fγ [P,Σ] is less than or equal to kn−k = ρ−1, and the proof
is complete.

The next lemma yields a lower bound for Dw(P,Σ). We define the nonnegative quan-
tities

̟ [µi] = w (|µi|) , i = 1, 2, . . . , k,

̟ [µi, µi+1] =

m
∑

j=0

wj

∣

∣

∣
µ
j
i − µ

j
i+1

∣

∣

∣

|µi − µi+1|
, i = 1, 2, . . . , k − 1,
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and (recursively)

̟ [µi, µi+1, . . . , µi+t] =
̟ [µi, . . . , µi+t−1] +̟ [µi+1, . . . , µi+t]

|µi − µi+t|
, i = 1, 2, . . . , k−2, t = 2, 3, . . . , k−i,

and the k × k matrix

Fγ [̟,Σ] =















̟ [µ1] 0 · · · 0
γ̟ [µ1, µ2] ̟ [µ2] · · · 0

γ2̟ [µ1, µ2, µ3] γ̟ [µ2, µ3] · · · 0
...

...
. . .

...
γk−1̟ [µ1, µ2, . . . , µk] γk−2̟ [µ2, µ3, . . . , µk] · · · ̟ [µk]















.

Lemma 4.2. Suppose that the matrix polynomial Q(λ) = P (λ)+∆(λ) belongs to B(P, ε, w).
If k ≤ n distinct scalars µ1, µ2, . . . , µk ∈ C are eigenvalues of Q(λ), then for any γ > 0,

ε ≥
sρ (Fγ [P,Σ])

‖Fγ [̟,Σ]‖2
.

Proof. Since the k distinct scalars µ1, µ2, . . . , µk are eigenvalues of Q(λ) = P (λ) + ∆(λ),
Lemma 4.1 implies that sρ (Fγ [Q,Σ]) = 0. As a consequence, the Weyl inequalities for
singular values (e.g., see Corollary 5.1 of [1]), applied to Fγ [Q,Σ] = Fγ [P,Σ] + Fγ [∆,Σ],
yield sρ (Fγ [P,Σ]) ≤ ‖Fγ [∆,Σ]‖2 for any γ > 0. Keeping in mind that ∆(λ) is of the

form ∆(λ) =
m
∑

j=0
∆jλ

j with ∆j ∈ C
n×n satisfying ‖∆j‖2 ≤ εwj (j = 0, 1, . . . ,m), the rest

of the proof is devoted to establish the inequality

‖Fγ [∆,Σ]‖2 ≤ ε ‖Fγ [̟,Σ]‖2 .

It is easy to see that

‖∆(µi)‖2 ≤

m
∑

j=0

‖∆j‖2 |µi|
j ≤ ε

m
∑

j=0

wj |µi|
j = εw (|µi|) = ε̟ [µi] , i = 1, 2, . . . , k,

and

‖∆ [µi, µi+1]‖2 ≤
m
∑

j=0

‖∆j‖2

∣

∣

∣

∣

∣

µ
j
i − µ

j
i+1

µi − µi+1

∣

∣

∣

∣

∣

≤ ε̟ [µi, µi+1] , i = 1, 2, . . . , k − 1.

For the sake of induction, we assume that for a given t ∈ {1, 2, . . . , k − 2}, it holds

‖∆ [µi, µi+1, . . . , µi+t]‖2 ≤ ε̟ [µi, µi+1, . . . , µi+t] , i = 1, 2, . . . , k − t.
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Then it follows

‖∆ [µi, µi+1, . . . , µi+t+1]‖2 ≤
‖∆ [µi, µi+1, . . . , µi+t]‖2 + ‖∆ [µi+1, µi+2, . . . , µi+t+1]‖2

|µi − µi+t+1|

≤
ε̟ [µi, µi+1, . . . , µi+t] + ε̟ [µi+1, µi+2, . . . , µi+t+1]

|µi − µi+t+1|

= ε̟ [µi, µi+1, , . . . , µi+t+1]

for every i = 1, 2, . . . , k − t− 1. Hence, we obtain

‖∆ [µi, . . . , µi+t]‖2 ≤ ε̟ [µi, . . . , µi+t] , t = 0, 1, . . . , k − 1, i = 1, 2, . . . , k − t.

As in the proof of Theorem 2.4 of [18], we can consider a unit vector

x =











x1
x2
...
xk











∈ C
kn (xi ∈ C

n, i = 1, 2, . . . , k)

such that

‖Fγ [∆,Σ]‖
2
2 = ‖Fγ [∆,Σ] x‖

2
2

= ‖∆(µ1) x1‖
2
2 + ‖γ∆ [µ1, µ2]x1 +∆(µ2) x2‖

2
2

+ · · ·+

∥

∥

∥

∥

∥

k
∑

i=1

γk−i∆ [µi, . . . , µk]xi

∥

∥

∥

∥

∥

2

2

≤ (ε̟ [µ1])
2 ‖x1‖

2
2 + (γε̟ [µ1, µ2])

2 ‖x1‖
2
2 + (ε̟ [µ2])

2 ‖x2‖
2
2

+2γ (ε̟ [µ1, µ2]) (ε̟ [µ2]) ‖x1‖2 ‖x2‖2 + · · · + (ε̟ [µk])
2 ‖xk‖

2
2

= ε2

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥













̟ [µ1] 0 · · · 0
γ̟ [µ1, µ2] ̟ [µ2] · · · 0

γ2̟ [µ1, µ2, µ3] γ̟ [µ2, µ3] · · · 0
...

...
. . .

...
γk−1̟ [µ1, µ2, . . . , µk] γk−2̟ [µ2, µ3, . . . , µk] · · · ̟ [µk]





















‖x1‖2
‖x2‖2

...
‖xk‖2









∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

2

≤ ε2 ‖Fγ [̟,Σ]‖
2
2 .

This completes the proof.

Keeping in mind Definition 2.2, the above lemma yields a lower bound for Dw(P,Σ),
namely,

Dw(P,Σ) ≥
sρ (Fγ [P,Σ])

‖Fγ [̟,Σ]‖2
. (22)
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It will be convenient to denote the lower bound in (22) by βlow(P,Σ, γ) and the upper
bound in (19) by βup(P,Σ, γ), i.e.,

βlow(P,Σ, γ) =
sρ (Fγ [P,Σ])

‖Fγ [̟,Σ]‖2
(23)

and (recalling the n× n matrix ∆γ defined by (12))

βup(P,Σ, γ) =
1

k

k
∑

i=1

(

1

w (|µi|)

)

‖∆γ‖2. (24)

Our main results are summarized in the following theorem.

Theorem 4.3. Consider an n × n matrix polynomial P (λ) as in (1) and a given set of
k ≤ n distinct complex numbers Σ = {µ1, µ2, . . . , µk}.

(a) For any γ > 0, Dw(P,Σ) ≥ βlow(P,Σ, γ).

(b) If the quantities β1, β2, . . . , βk in (11) are nonzero, then for any γ > 0 such that
rank(V (γ)) = k, Dw(P,Σ) ≤ βup(P,Σ, γ) and the matrix polynomial Qγ(γ) in (17)
lies on the boundary of B(P, βup(P,Σ, γ), w).

In the next remark, we give an upper and a lower bound for a spectral norm distance
from an n×n matrix A to the set of all matrices with k prescribed eigenvalues. This issue
is explained in [9, 12] in detail.

Remark 4.4. Consider the standard eigenproblem of a matrix A ∈ C
n×n. In this

special case, we set P (λ) = Iλ − A and w = {w0, w1} = {1, 0}. Thus, for every i =
1, 2, . . . , k, ̟ [µi] = w (|µi|) = w0 and ̟ [µi, . . . , µj] = 0 for every j = {i+ 1, i+ 2, . . . , k}.
Consequently, the matrix Fγ [̟,Σ] becomes the identity matrix Ik and the lower bound in
(23) turns into βlow(P,Σ, γ) = sρ (Fγ [P,Σ]). Furthermore, it is easy to see that αi,s = 1
and βs = 1 for every i, s = 1, 2, . . . , k. Therefore, the upper bound in (24) becomes

βup(P,Σ, γ) = ‖∆γ‖2 = sρ (Fγ [P,Σ])
∥

∥

∥Û (γ) V̂ (γ)†
∥

∥

∥

2
.

Moreover, the associated perturbed matrix polynomial Qγ(λ) in (17) is now given by

Qγ(λ) = P (λ) + ∆γ(λ) = P (λ) + ∆γ = Iλ−
(

A+ sρ (Fγ [P,Σ]) Û (γ) V̂ (γ)†
)

. (25)
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5 Numerical examples

In this section, the validity of the results in the previous sections is verified by two nu-
merical examples. The lower and upper bounds for the distance Dw(P,Σ) are computed
by applying the procedures described in Section 4, and by using the MATLAB function
fminbnd which finds a minimum of a function of one variable within a fixed interval. As it
was mentioned in Remark 3.3, the condition rank(V (γ)) = k appears to be generic when
γ > 0. All computations were performed in MATLAB with 16 significant digits; however,
for simplicity, all numerical results are shown with 4 decimal places.

Example 5.1. Consider the 3× 3 matrix polynomial

P (λ) =





7 9 −2
0 −2 0
6 −3 −1



λ2 +





9 −3 3
−5 8 10
4 −3 0



λ+





−5 0 5
−2 −2 10
1 9 2



 ,

whose spectrum is σ(P ) = {76.9807, 0.9284, 0.3034,−1.0283,−0.9421±0.9281 i}. Let w =
{w0, w1, w2} = {12.0731, 14.8523, 11.7991} be the set of weights which are the norms of the
coefficient matrices, and suppose that the set of desired eigenvalues is Σ = {1 + i,−2, 3}.
By applying the MATLAB function fminbnd, it appears that the function βup(P, {1 +
i,−2, 3}, γ) (γ > 0) attains its minimum at γ = 1.9656, that is,

βup(P, {1 + i,−2, 3}, 1.9656) = 1.0090,

and the function βlow(P, {1+i,−2, 3}, γ) (γ > 0) attains its maximum at γ = 5.9606·10−5,
that is,

βlow(P, {1 + i,−2, 3}, 5.9606 · 10−5) = 0.1320.

In Figure 1, the graphs of the upper bound βup(P, {1 + i,−2, 3} , γ) and the lower bound
βlow(P, {1 + i,−2, 3} , γ) are plotted for γ ∈ (0, 10]. Also, for the perturbation

∆1.9656 (λ) =





−1.5506 + 0.5852 i −3.6805 − 3.7560 i 3.2843 − 2.4550 i
−1.3951 + 1.1287 i 0.8130 − 3.6071 i 1.4666 + 0.2551 i
−4.9524 + 1.3272 i −0.1817 − 0.1712 i −0.1517 − 2.5523 i



λ2

+





−1.0045 + 0.6941 i −3.2991 − 2.0307 i 1.9114 − 2.3391 i
−0.7966 + 1.0550 i −0.0602 − 2.7233 i 1.0938 − 0.0784 i
−3.3045 + 1.8295 i −0.1603 − 0.0901 i −0.5623 − 1.7977 i



λ

+





−2.1779 − 1.0042 i 0.1345 − 7.6081 i 5.8658 + 0.8927 i
−2.5802 − 0.2920 i 4.5439 − 2.8248 i 1.2263 + 1.7709 i
−6.3971 − 3.7574 i −0.0080 − 0.3612 i 2.4770 − 2.7481 i





the perturbed matrix polynomial Q1.9656(λ) = P (λ) + ∆1.9656(λ) lies on the boundary of
the set B(P, βup(P, {1 + i,−2, 3} , 1.9656), w) = B(P, 1.0090, w) and has Σ in its spectrum.
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Fig 1: The graphs of βlow(P, {1 + i,−2, 3} , γ) and βup(P, {1 + i,−2, 3} , γ).

It is worth mentioning that the discussion at the end of Section 3 yields the pertur-
bation

∆0(λ) = ∆0 =





0.0673 + 0.0158 i 0.0656 − 0.0194 i 0.0060 − 0.0079 i
1.2669 − 0.1878 i 0.0412 + 0.2304 i −0.6315 + 0.0940 i
0.3092 − 0.1368 i −0.1210 + 0.1678 i −0.2397 + 0.0684 i



 · 102.

The perturbed matrix polynomialQ0(λ) = P (λ)+∆0 lies on the boundary of B(P, 12.5337, w)
and has Σ in its spectrum.

Our second example illustrates the applicability of Remark 4.4.

Example 5.2. Consider the Frank matrix of order 12,

F12 =





































12 11 10 9 8 7 6 5 4 3 2 1
11 11 10 9 8 7 6 5 4 3 2 1
0 10 10 9 8 7 6 5 4 3 2 1
0 0 9 9 8 7 6 5 4 3 2 1
0 0 0 8 8 7 6 5 4 3 2 1
0 0 0 0 7 7 6 5 4 3 2 1
0 0 0 0 0 6 6 5 4 3 2 1
0 0 0 0 0 0 5 5 4 3 2 1
0 0 0 0 0 0 0 4 4 3 2 1
0 0 0 0 0 0 0 0 3 3 2 1
0 0 0 0 0 0 0 0 0 2 2 1
0 0 0 0 0 0 0 0 0 0 1 1





































,

which has some small ill-conditioned eigenvalues. Suppose that the set of the desired

17



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.002

0.004

0.006

0.008

0.01

0.012

 γ

 

 
Upper Bound
Lower Bound

Fig 2: The graphs of βlow(P, {0.1,−0.1, 0.1 i,−0.1 i} , γ) and βup(P, {0.1,−0.1, 0.1 i,−0.1 i} , γ).

eigenvalues is Σ = {0.1,−0.1, 0.1 i,−0.1 i}. The optimal (spectral norm) distance from F12

to the set of matrices that have Σ in their spectrum is 6.9 · 10−4 [12]. We consider the
linear matrix polynomial P (λ) = λI12 − F12, and the weights w0 = 1 and w1 = 0 (i.e.,
we consider perturbations of the standard eigenproblem of matrix F12). The MATLAB
function fminbnd applied to the difference

βup(P, {0.1,−0.1, 0.1 i,−0.1 i} , γ)− βlow(P, {0.1,−0.1, 0.1 i,−0.1 i} , γ)

yields γ = 2.5730. Then, according to the discussion in Remark 4.4, we have

βlow (P,Σ, 2.5730) = 6.4007 · 10−4 ≤ 6.9 · 10−4 = Dw (P,Σ)

≤ 8.6167 · 10−4 = βup (P,Σ, 2.5730) .

Also, it is easy to see that the spectrum of the perturbed linear matrix polynomial
Qγ(λ) in (25) includes the given set Σ. In Figure 2, the graphs of the upper bound
βup(P, {0.1,−0.1, 0.1 i,−0.1 i} , γ) and the lower bound βlow(P, {0.1,−0.1, 0.1 i,−0.1 i} , γ)
are plotted for γ ∈ (0, 5].

6 Concluding remarks

In this article, a spectral norm distance from an n × n matrix polynomial P (λ) to the
n × n matrix polynomials that have k ≤ n distinct complex numbers as eigenvalues is
introduced and studied. An upper and a lower bound for this distance are obtained.
Furthermore, a perturbation of P (λ) with the given scalars as eigenvalues and associated
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to the upper bound is constructed under two conditions (namely, rank(V (γ)) = k and
β1, β2, . . . , βk 6= 0) which appear in our experiments to hold generically. The tightness of
these bounds is illustrated by two numerical examples. Overall, the proposed methodology
can be considered as an extension of the results in [5, 10,12,13,17,18].

A question that arises in a natural way, is what one can say about the case where
some of the desired eigenvalues are multiple. In this case, it seems that it is necessary
to replace some of the divided differences in the nk × nk matrix Fγ [P,Σ] (see Definition
2.4) by derivatives of the matrix polynomial P (λ). The mixture of divided differences and
derivatives in the definition of Fγ [P,Σ] yields several computational difficulties. More-
over, the new perturbations and bounds will be of different type than the perturbation
constructed in Section 3 and the bounds obtained in Section 4. As a consequence, this
problem requires the development of a modified technique based on the combination of
the methodology given herein and the methods established in [9, 12, 17, 18]; this will be
the subject of a future work.

Acknowledgments. We acknowledge with thanks an anonymous referee for useful com-
ments and suggestions.
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