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Abstract
The g-numerical range (0 < ¢ < 1) of an n X m matrix polynomial
PA) = A A" 4+ -+ At A+ Ay is defined by
We(P) = {AeC:y"PN)x =0, z,yeC", z"z=y"y=1, y"'z =q}.

In this paper, we investigate the boundary and the shape of W, (P), using
the notion of local dimension. We also obtain that the g-numerical range
of first order matrix polynomials is always simply connected. Moreover,
the special cases of 2 x2 matrices and matrix polynomials are considered.
In particular, the boundary of the g-numerical range of a 2 X 2 matrix
polynomial of degree m lies on an algebraic curve of degree at most 8m.

Keywords: boundary; connectedness; eigenvalue; ellipse; local dimension; matrix poly-
nomial; g-numerical range
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1 Introduction
Consider a differential equation of the form
Amg ™ () + Apag™ D (@) 4+ gD () + Aog(t) = f(1), (1)

where A; € C"*" (j =0,1,...,m), g(t) € C" is the unknown vector function
and f(t) € C™ is piecewise continuous (the indices on g¢(t) denote derivatives

IDepartment of Mathematics, Soochow University, Taipei 11102, Taiwan (E-mail:
mtchien@math.scu.edu.tw). The work of this author was supported in part by National Sci-
ence Council of the Republic of China.

2Department of Mathematical System Science, Faculty of Science and Technology, Hirosaki
University, Hirosaki 036-8561, Japan (E-mail: nakahr@cc.hirosaki-u.ac.jp).

3Department of Mathematics, National Technical University, Zografou Campus, 15780
Athens, Greece (E-mail: ppsarr@math.ntua.gr). Corresponding author.



with respect to the independent variable t). Applying the Laplace transforma-
tion yields the associated matriz polynomial

P\ = Ap A + A N AN+ Ay, (2)

where A is a complex variable. As a consequence, the spectral analysis of P())
leads to the solutions of (1). The suggested references are [5, 16].

If all the coefficients of P(\) are Hermitian matrices, then P(\) is called
self-adjoint. A scalar Ay € C is said to be an eigenvalue of P(\) in (2) if the
system P(M\g)xz = 0 has a nonzero solution zy € C™. This solution xg is known
as an eigenvector of P(X) corresponding to g, and the set of all eigenvalues of
P(\) is the spectrum of P(\), namely, o(P) = {A € C: detP(\) = 0}. For a
real ¢ € [0,1], the g-numerical range of P()) is defined by

Wy(P) = {AeC:y"PNz =0, 2,y cC", 2"z =y"'y=1,y"z=q}. (3)

Clearly, W, (P) is always closed and contains the spectrum o(P). It is also easy
to see that if ¢ =0, then W,(P)=C. For ¢ € (0,1] and P()\) = ¢ 'I) — A,
W4(P) coincides with the g-numerical range of matrix A [1, 8, 9],

Fy(A) = {y Az 2,y e C", 2" =y'y =1, y*z = ¢q}.
Moreover, for ¢ = 1, we have the (classical) numerical range of P()), that is,
W(P) = Wi(P) ={AeC:2"PNz =0,z e€C", 2"z =1},
and the numerical range (also known as field of values) of matrix A,
F(A) = FA(A) = {z" Az : 2 € C", 2"z = 1}.

During the last decade, the numerical range W (P) has attracted attention,
and several results have been obtained (see e.g., [2, 3, 6, 7, 10, 11, 13]). These
results are helpful in studying and understanding matrix polynomials, and some
of them have been generalized to the case of g-numerical range [14, 15]. If
g € (0,1], then the g-numerical range W,(P) in (3) is not always connected,
and it is bounded if and only if 0 ¢ F,(A,,) [10, 14]. If p € C is a boundary
point of W, (P), then the origin is also a boundary point of the range F,(P(u))
[11, 14]. Furthermore, for any ¢ € [0,1], W(P) C W,(P), and consequently, all
the known applications of W (P) (and its connected components) on the spectral
analysis and the factorization of P(\) are also valid for W, (P) (see [15] and the
references therein).

In this article, we continue the study of the g-numerical range W, (P), ex-
tending recent results on the boundary and the geometry of the classical numeri-
cal range of matrix polynomials [6, 13]. In Section 2, we investigate the boundary
of W,(P) and obtain that, if the coefficients of P(\) are not all scalar multiplies
of the same matrix, then for 0 < ¢ < 1, W,(P) has a nonempty interior. In
Section 3, it is proved that for 0 < ¢ < 1, every non-isolated point Ag of W, (P),



which does not belong to the g-numerical range of the derivative P(l)()\), has
local dimension 2, i.e., there exists a sequence {ux}ren € Int W, (P) converg-
ing to Ag. Moreover, as it is shown in Section 4, the g-numerical range of a
linear pencil P(A) = AX — B is always simply connected. In Sections 5 and 6,
we study the g-numerical range of 2 x 2 matrices and matrix polynomials. For
a 2 x 2 general complex matrix A, we give an explicit formula for F,(A) and
obtain a necessary algebraic condition for the origin to be a boundary point of
F,(A). As a consequence, if the g-numerical range of a 2 x 2 matrix polynomial
of degree m does not coincide with the complex plane, then its boundary lies
on an algebraic curve of total degree at most 8m.

2 Boundary

Consider an n X n matrix polynomial P(\) = A, A™ + -+ A1\ + Ag and a
real g € (0,1]. In the following theorem, we characterize the boundary W, (P),
extending a known result on W (P).

Theorem 1 (For ¢ =1, see [6, Theorem 2])
Let P(\) be an n x n matriz polynomial and let 0 < g < 1.

(i) If Ao is a boundary point of Wy(P), then 0 € OF,(P(Xo)).
(if) If 0 € OF,(P(X\o)), P(Mo) #0 and 0 ¢ F,(PM(Ng)), then \g € OW,(P).

Proof For statement (i), see [14, Theorem 2.2]. For the second statement,
assume that 0 € 9F;(P(Xg)) and Ao € Int W, (P). Then there is a real € > 0
such that for every pu € C with |4 — Ag| < ¢, there exist two unit vectors
zy,yu € C" satisfying y; P(u)z, =0 and yz, = q. Moreover,

Y {P(Xo) + (b — 20)PM (Xo) + (1 — Xo)R(p, Ao) b, = 0,

where ||R(u, Ao)|| = o(1) as |u — Ao| — 0. The convexity of the g-numerical
range of matrices and the arguments of the proof of [6, Theorem 2] imply that
Ao is a boundary point of W, (P). O

Remark 1 It is worth noting that the first statement of the above theorem
holds also for continuous matrix functions and statement (ii) is true for analytic
matrix functions. This follows readily from their proofs.

In general, for a real 0 < ¢ < 1, the g-numerical range Wy(P) has a
nonempty interior. The next lemma is necessary and of independent interest.

Lemma 2 Let P(A) = Ap N+ -+ A A+ Ap be an n X n matriz polynomial
and let ¢1 € (0,1] such that for every p € Wy, (P), P(u) is a scalar matriz.
Then there is an nxn matriz A with 0 ¢ F,, (A) and a scalar polynomial p(X\)
such that P(X) = Ap(X\). In particular, for every q € (0,1], Wy (P)={ e C:
p(A) =0} = o(P) when 0 ¢ Fy(A), and W,(P) =C when 0 € F,(A).



Proof For any € W,, (P), P(u) is a scalar matrix such that 0 € F,, (P(u)).
Hence, p € Wy, (P) implies P(u) = 0. Since P()) is a nonzero matrix poly-
nomial of degree m, the equation P(A) = 0 has no more than m roots. Con-
sequently, the numerical range Wy, (P) is bounded (i.e., 0 ¢ Fy, (A,,)) and
consists of s < m isolated points, A1, Ag,...,As. Thus, by [15, Theorem 5]
(see also [11, Theorem 2.1]), the matrix polynomial P()) is written in the form
P(A\) = Ap(\), where A= A,, and p(\) = (A — X)) (A = Ag)k2 o (A — X\ )Fs
(with k1 + ko + -+ ks = m). O

Notice that if P(A\) = Ap(\) for some A € C"*" with 0 € F,(A) and a
scalar polynomial p(X), then W, (P) = C but P()\) is not necessarily a scalar
matrix for every A € C.

Theorem 3 Let P()\) be an n x n matriz polynomial as in (2) and let 0 <
g < 1. The g-numerical range Wy (P) has no interior points if and only if there
exist a matriz A and a scalar polynomial p(\) such that P(\) = Ap(\) and

0 ¢ F,(A).

Proof Suppose that P()) is written in the form P(A) = Ap()), where A is an
n x n matrix with 0 ¢ F,(A), and p()) is a scalar polynomial. Then clearly,
the g-numerical range of P(\) is

We(P) = {AeC:p(A) =0} = o(P),

and thus, it has no interior points.

Conversely, assume that W,(P) has no interior points and there exists a
Ao € W1(P) such that P(\g) is not a scalar matrix. Since ¢ < 1, by [8, Theorem
2.5], it follows that 0 € ¢F1(P(Ao)) C Int Fy(P(Xg)), i-e., the origin lies in the
interior of F,(P(Xo)). Hence, by Theorem 1 (i) (see also [14, Theorem 2.2]), Ag
is an interior point of W, (P). This is a contradiction, and consequently, P(\)
satisfies the conditions of Lemma 2 for g; = 1. The proof is complete. O

3 Local dimension

Let © be a closed subset of C and let w € Q. The local dimension of the point
w in Q is defined by

lim dim {Q2 h h
Jim dim {Q0 S} (0> 0).

where dim{-} is the topological dimension and S(w, h) denotes the closed circular
disk with centre at w and radius equal to h. The local dimension of w € Q
takes the value 0 when w is an isolated point of €2, the value 2 when there
exists a sequence {p}ren € Int Q converging to w, and the value 1 otherwise.
It is important to remark that for 0 < ¢ < 1, all the points of the ¢-numerical
range of a non-scalar matrix A € C™*™ have local dimension 2 (in F(A4)) [8, 9].



On the other hand, the numerical range F(A) (= F1(A)) is a line segment if
and only if A is a normal matrix with colinear eigenvalues.

Consider a matrix polynomial P()\) as in (2) and a real ¢ € (0,1). Then
in general, the local dimension of any Ay in W,(P)\ W,(PM) is 2. The only
exception is the isolated points of W, (P) (if any).

Theorem 4 (For ¢ =1, see [13, Theorems 1 and 2])
Let P(A) = Ap A+ -+ A1 A+ Ay be an n x n matriz polynomial, q € (0,1)
and let \g € W, (P)\ W,(PW). Then either Ny is an isolated point of W,(P),
or the local dimension of Ao in Wy(P) is equal to 2.

Proof Assume that Ao is not an isolated point of W,(P) and the local di-
mension of Ay in Wy (P) is 1. Obviously, Ao belongs to 9W,(P) and there is
a real 79 > 0 such that W,(P) N S(Ao,m0) is a curve lying on 0W,(P). By
Theorem 1 (i), the origin is a boundary point of F,(P()g)). Since A¢ is not
an isolated point of the closed set Wy (P), if P(Ao) = 0, then the polynomial
P(A) is written P(X) = (A — Ag)Q(N), where Q(\) is a matrix polynomial of
degree m —1 and Ag € W,(Q). Consequently, Ao € Wq(P(l)); a contradiction.
Hence, P(X\g) # 0, F,(P(X\o)) is convex with a nonempty interior and 0 is a
differentiable point of 0F,(P(Ao)) [8, 9]. Thus, there exists a straight line &
passing through the origin and defining two closed half planes H; and Hs such
that Fy(P(\o)) C Hi.

For every r € [0, 7] and ¥ € [0, 27], either Ag +rel? ¢ W,(P), or \o +rel? €
OW,(P). Then by Theorem 1, for every r € [0,79] and ¢ € [0,2n], either
0¢ Fy(P(Xho+ rew)), or 0 € OF,(P(Xo+ rew)). Moreover, the origin does not
belong to the convex set F,(P™M)()\g)) and the matrix P(\o + reiﬁ) is written

P(ho+re”) = P(X) +rel” PN (Ag) + e R(Xo, 7, ),

where ||R(Xo,7,9)|| = o(1) as r — 0. Hence, for sufficiently small r, there is a
cone K, ={z€C: 91 <Argz < o, 0 < pa — 1 <9 <m} such that

E,(PY (o) + R(o,7,9)) C Kpxy\{0}.

Following the steps of the proof of [13, Theorem 1], we obtain that the local
dimension of the origin in F,(P()\o)) is equal to 1. This is a contradiction and
the proof is complete. O

Remark 2 It is clear from its proof that the above theorem is also valid for
analytic matrix functions.

4 Linear pencils

Consider a linear pencil A\ — B, where A and B are n X n complex matrices.
By Theorem 4, if g € (0,1), then the g-numerical range W,(A\ — B) is either
a singleton or all of its points have local dimension 2.



Recall that a bounded connected set 2 C C is called simply connected if
C\Q is connected (in particular, 2 has no “holes”). If @ C C is unbounded,
then we consider the set QU {oo} C CU {oo} and say that QU {oo} is simply
connected if (CU{o0})\Q is connected. (Note that the two definitions coincide
when € is a bounded subset of C.) By [14], it is known that if ¢ € (0,1), then
W,(AX — B) is always connected. Furthermore, we have the following result.

Theorem 5 (For ¢ =1, see [13, Theorems 4 and 5))

Let AN — B be a linear pencil, and let g € (0,1]. If the g-numerical range
Wq(AX — B) is bounded, then it is simply connected. If Wy(AX — B) is un-
bounded, then Wy(AX — B) U {oo} is simply connected in the extended plane
CU {o0}.

Proof Suppose that W,(AX — B) is bounded and assume that it is not simply
connected. Then W,(AX — B) has a “hole”, i.e., there is a complex number
wo ¢ Wy(AX — B) such that for every ¢ € [0,27], there exists a real r, > 0
satisfying _

wo + rpe'? € W (AN — B).

Since Wy(A(A+pu) —B) = Wy (AX—B) —pu (p € C), without loss of generality,
we may assume that wo = 0. Then 0 ¢ W,(AX— B) and for every ¢ € [0, 27],
roe'? € Wy(AX — B). Equivalently, 0 ¢ Fy(B) and for every ¢ € [0,27],
0 € F,(Ar,e'¥ — B). Since the origin does not belong to the convex sets Fy,(A)

and Fy(B), as in the proof of [13, Theorem 4], there exist an angle ¢q € [0, 27]
and a cone Ko ={z¢€ C: ¥ <Argz <y, 0 <y — 1 <1 <} such that

Fy(A(rp,e'#°) — B) C 1yl Fy(A) + F,(~B) C Int K.

Thus, Fy(A(re, eiwo) — B) does not contain the origin; a contradiction. Hence,
if W,(AX — B) is bounded, then it is also simply connected.

Assume now that the g-numerical range W, (AX— B) is unbounded, that is,
0 € F,(A) [14]. Since C U{oo} (2 S?) is simply connected, we have nothing to
prove when W,(AX — B) = C. Suppose that there is a A\g ¢ W,(AX— B). Since
W, (AA+ X o) — B) = Wy (AN — B) — Ag, Wy(AX—B)U{oo} is homomorphic to
the set W, (AXN—(B—A\o))U{oo}. Hence, we can assume that 0 ¢ W,(AA—B),
or equivalently, 0 ¢ F,(B). Then one can verify that in the extended plane,
Wo(BX — A) = {p':p€ Wy(AXN— B)U {oo}}. The map ¥(pu) = p~' for
p € Wy(AX — B) and ¥(oo) =0 is an homomorphism of Wy(AX — B) U {0}
onto W, (BA—A). By the first part of the proof, the bounded range W,(BA—A)
is simply connected, and since simply connectedness is a topological property,
the proof is complete. O

5 Two by two matrix case

In the previous three sections, we investigated qualitative properties of the ¢-
numerical range of matrix polynomials. However, we are also interested in the



construction of explicit formulas for the boundary of the g-numerical range
of matrices and matrix polynomials. Unfortunately, there are no currently
known methods for the direct (analytical) computation of the boundary of the
g-numerical range of n Xn non-normal matrices for n > 3, and thus, we restrict
ourselves to the 2 x 2 case.

For a 2 x 2 complex matrix A, consider the Hermitian matrices

A = A4 and Ay, = A_.A ,
2 21

(4)

and observe that A = A +1iAs,. The g¢-numerical range F,(A) is a closed
elliptical disk and it is explicitly known for special cases. In particular, we have
the following result [9, 12].

Lemma 6 Suppose that q € [0,1], A is a 2 X2 complex matriz with zero trace
and the Hermitian matrices Ay and Agn in (4) satisfy trace(ApAgp) = 0.
Then the g-numerical range of A is given by

Fy(A) = {u+iveC:u,veR, Hy(u,v) <1},

where
U

Vitrace(42) + /(1 — ¢?) trace(Aih)>

Hy(u,v) = 2(

2 ” .
- <\/trace(Azh) +/(1—¢?) trace(Ai))

This lemma allows us to describe the g-numerical range of a 2 x 2 matrix
A with zero trace (see also [1, 9]). To facilitate the presentation, we give the
methodology next. If trace(A,Asn) = 0, then Lemma 6 is directly applicable.
If trace(ApAsy) # 0, then we have to rotate the principal axes of the elliptical
disk F,(A). For any angle 6 € [—m, x|, we consider the matrices

B(9) = e A = cosfA— isind A,
B(0) + B(0)*

By(0) = ) = cosfO Ay, +sinf Ay,
and B(6) — B(6)"
B, (0) = % = —sinf A, +cos Agy,.
i

Then one can verify that
1
trace(By(0)Bsp(0)) = — 3 sin(20) (trace(A7) — trace(A2,))

+ cos(20) trace(Ap Agp)-



If trace(A?) = trace(A?,), then for 6 = /4,
1
trace( By, (7/4)Bsp (1/4)) = — 5 (trace(A}) — trace(A2,)) = 0.

If trace(A7) # trace(A4?,), then there is exactly one angle 6y € (—m/4,m/4)
such that

2trace(AhASh)
2 = .
tan(260) trace(A?) — trace(A?)) (5)
For this angle, trace(By(00)Bsn(00)) = 0. Note also that
cos(20) = ———1  and  sin(26) = 020 (g

1+ tan?(26,) V1 + tan?(26,)

As a consequence,

trace(By(00)?)

trace((cos By Ay + sin By Agp)?)
1

_ 1 2
= 3 (1 + COS<290)) trace(A7)

+% <1 — (:05(1290)> trace(AZ%,) (7)

and

trace(Bgp,(00)?) = trace((cos @y Ay + sinfy Agp)?)

! <1 . (1200)) trace(42)
% (1 + mség())) trace(A2,). (8)

By the condition Fj(A) = elfo F,(B(6y)) and Lemma 6, it is clear that

+

F,(A) = {u+iv e C:u,v € R, Hy(cos by u+sinby v, —sinbp u+cosbyv) < 1}.
Thus, the boundary of Fj(A) is the ellipse
Hy(cosbpu+ sinbyv, —sinfyu + cosfgv) = 1.
Moreover, straightforward computations yield
Hoy(cosbpu+sinby v, —sin by u + cosyv) = M, (u? 4 v?)

+ N, [cos(20p) (u? — v?) + 2sin(20p) uv], 9)

where

) 2
My = <\/trace(Bh(00)2) + /(1 —¢?) trace(BSh(90)2)>

2
1
* <\/trace(Bsh(90)2) +/(1—¢?) trace(Bh(90)2)>




and

) 2
<\/trace(Bh(00)2) +/(1-¢? trace(Bsh(00)2)>
2
1
<\/trace Bsn(00)?) + \/ 1 — ¢?) trace(Bp(6p)? )) '

Suppose now that A is a 2 x 2 general complex matrix. At this point and
for the remainder of the section, it is convenient to define

N, =

a = trace([A; — (1/2)trace(Ap))?)
= trace(A?) — (1/2)trace(Ap)?,

b = trace([Ash — (1/2)trace(Aqp)I2)?) (10)
= trace(A4?%,) — (1/2)trace(Aq)?,

¢ = trace([Ap — (1/2)trace(Ap)I2][Asn — (1/2)trace(Asp) o))
= trace(ApAsn) — (1/2)trace(Ap) trace(Agy).

Lemma 7 Consider a 2x2 complex matriz A, and let a, b and ¢ as defined in
(10). Then ab—c®> >0 and equality holds if and only if A is a normal matriz.

Proof The matrix A is unitarily similar to a matrix with diagonal elements
equal to (1/2)trace(A) [4]. Since trace(A — (1/2)trace(A)l2) = 0, it follows
trace(An — (1/2)trace(Ap)l2) = trace(Asn — (1/2)trace(Asn)l2) = 0, and we
may assume that

A:[gg}; a, e C.

Then we can see that

1 _
a = trace(A}) = 5 la+ 512 > 0,

b = trace(4%) = ~ja—fF]* >0

and

¢ = trace(ApAgp) = @ = Im(af).

Hence, it is clear that

ab—c? trace(A? trace(A2,) — trace( A, Ayp)?

= i@+ Ao~ B + (a8 - aB?]

1
= (al"+ 18" = 2|al?|B)

1 2 2\2
7 (ol =182 >



Moreover, the equality ab — c¢* = 0 holds if and only if |a| = |3|, or equiva-
lently, if and only if the matrix A is normal. ]

The above lemma yields a strong connection between the classical numerical
range and the g-numerical range of 2 x 2 matrices.

Theorem 8 Let g € [0,1) and A be a 2 x 2 complex matriz, and let a, b and
¢ as defined in (10). Then the quantities

a; = a+(1-=¢)b+2/(1—-¢*(ab—c?)
By = (1—=¢>a+b+2y/(1—¢*(ab—c?) (11)
Vg = qu

satisfy the inequality oq By > 73 and there exists a 2 X 2 complex matriz B,
such that

trace(By) = gqtrace(A),
a, = trace([B, — (1/2)trace(B,)ls]3),
B, = trace([B, — (1/2)trace(B,)l2]%,),
vg = trace([By — (1/2)trace(By)I2]n [By — (1/2)trace(By)I2]sh)
and

F,(A) = F(B,).

Proof By [4], A is unitarily similar to a matrix with diagonal elements equal
to (1/2)trace(A). Moreover, by [4, Property 1.2.3],

1 1
F, (A +3 trace(A)b) = F,(A)+ 3 g trace(A).

As in the proof of Lemma 7 and without loss of generality, we may assume that

0 «
A[ﬁ 0], a,feC

with )

a = trace(A?) = 5 la+ B2 > 0,

b = trace(A?%,) = %|a—3|2 >0
and —

¢ = trace(ApAqn) = aﬁ;i.aﬁ = Im(af).
i

Define the angle 6y = 7/4 when a =0, and 6y € (—n/4,7/4) such that

2¢  Im(af)

tan(2600) = a—b  Re(ap)

10



when a # b (see (5)). Then by (6), it follows

— 2
cos(20y) = __azb and sin(26p) = ¢

(a—b)2+4c? Vie—b)2+4c2

Moreover, (7) and (8) are written

Via—b2+4e
trace( By (0p)?) — a+b+ (a2 b)2+4c

and
b— —b)2+4c?
trace(Bsp(00)?) = iy (112 ) Hdc ,
respectively. Thus, by straightforward computations, (9) implies that the bound-

ary of the g-numerical range F,(A) is the curve

{u+iveC:u,veR, H(u,v) =0},

where

H(u,v) = (2b+4V/(1-¢®)(ab—c2)+2a(l—¢?)u?
20+ 41— @ab— @) +2b(1— %)) ?
—4¢%cuv — 2(a+b)(2- V({1 — ¢ (ab—c2)
+(1—=¢» (2% —a® —b* —4ab)
—(2-2¢*+¢")(ab—?). (12)

For the quantities ag, B, and ~y, in (11), by Lemma 7, it follows that o, >
0, B4 >0 and

agby =7 = ab—+2(a+b)2- )V - ¢*)(ab- )
+(1—¢*) [(a+b)?+2(ab—c?)
> 0.

Define now the matrix B, by

when |a| > |G|, and

(1- 1q2)a]

B :[ 0
1 (1++/1—-¢?)pB 0

when |a] < [B]|. Then trace(B,) = 0, and we can verify that trace(B] ;) = ag,
trace(B] .,) = B, and trace(BgnBgsn) = 7y Furthermore, by [4, Theorem

11



1.3.6], a point u+iv € C (u,v € R) belongs to the boundary of the numerical
range F(B,) if and only if

Qﬂqu2+2aqv2—4’yquv—aq5q—|—7§ = 0. (13)

Substituting (11) into (13) yields H(u,v) = 0 for the polynomial H(u,v) in
(12). Consequently, 0F,(A) = 0F(B,), completing the proof. O

Next we describe the boundary of Fi,(A) by a quartic equation without use
of any radical expressions such as vab — c?, and give a necessary algebraic
condition for the origin to be a boundary point of Fj(A).

Theorem 9 Suppose that ¢ € [0,1] and A is a 2 X 2 complex matriz. Let
1 1
fa = 3 Re(trace(A)) and ga = 3 Im(trace(A4)),

and let a, b and ¢ as defined in (10). If the origin belongs to the boundary of
the g-numerical range Fy(A), then

Go(A) = q(caofi+coagh+csyfiga+cisfagh+casfigh)
+q*(co0 3 +co29% +c11faga)+coo = 0,

where

co = 4((1-¢*)%a®=2(1-¢Mab+ 0" +4(1 - ¢*)c),

coa = 4((1—=¢*)**—2(1—q¢*ab+a®>+4(1—q¢%)c?),

31 = —16¢%((1—¢Ha+b),

3 = —16¢%((1—¢*)b+a),

can = 8((1—q*)(a® —|—b2) (4—4¢*+2¢HP + (=2 +2¢% + ¢Y)ab),

cao = 4[-(1-¢*)%® -1 -+ (1 +¢*—3¢*+¢%a%
+(1—-4¢+2¢Yab® + (-4 +4 +¢* —®ac® + (—4+8¢*> = 3¢" )b,

co2 = 4[-(1—¢)%* -~ (1-¢*a*+ (1+¢*—3¢* +¢%)ab?
+(1-4¢*+2¢)a’b+ (—4+4¢ + ¢* = O + (=4 +8¢> =3¢ )a?],

ci1 = 8c®l(1—¢*)(a®>+b*)+ (6 —6¢*+¢")ab+ (=4 +4¢* — ¢*)c?],

coo = [1-¢)(@®+b*)+(-2+2¢*—gHab+ (4 —4¢ + ¢

Proof Consider the matrix Ay = A — trace(A)I> and notice that the origin is
a boundary point of F,(A) = F,(Ag) + (1/2) gtrace(A4) if and only if the point

ug +ivg = — %trace(Ah) — i%trace(Ash)

belongs to 0F,(Ao). By the proof of Theorem 8, a point u+iv € C (u,v € R)
belongs to the boundary 0F,(Ao) if and only if

H(u,v) = 0,
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where the polynomial H(u,v) is defined in (12) (recalling that trace(Ag) = 0).
Hence, ug +ivg € 9F,(Ay) if and only if

0 = 2b+4V/0-g)(ab—c2)+2a(1—¢*)ud
+(2a+4y/(1—¢)(ab—c) +2b(1— %)) vp
—4q¢*cugvy — 2(a+b)(2 - ¢*)V(1 - ?)(ab - )
+(1—-¢*)(2c —a®—b*—4ab)
-2-2¢+q"(ab—?),

where a = trace(Ag ;,), b= trace(A] ;) and ¢ = trace(AgnAg,sh), Or equiva-
lently, if and only if

2/ = ) ab = A)((a+b)(2 - ¢) — 203 — 203)
=2b+2a(l—¢*))uj+ (2a+2b(1—q%)vg
—4q¢®cugvo+ (1 —¢*)(2¢* —a® —b* — 4ab)
—(2-2¢+¢"(ab—c?).

By straightforward computations and keeping in mind that
e
ul = Ztrace(Ah)2 = ¢ 13,

2
q
vg = Ztraee(Ash)2 = q2g124
and

wovy = T trace(Ap) trace(Au) = ¢ fa g,

the proof is completed. O

6 Two by two matrix polynomial case

Let P(\) be an n X n matrix polynomial as in (2), and let z,y € C" be
two unit vectors with y*z = ¢ € (0,1] (for ¢ = 1, * = y). Then there
exist an n x 2 matrix 7" and two vectors w,,w, € C* such that T*T = I,
z = Tw, and y = T'w,. Moreover, we have wiw, = wi(T"T)w, = z*z = 1,
wywy = wy(T*"Tw, = y*y = 1 and wyw, = w,(T*T)w, = y*r = q. Hence,
by [14, Proposition 1.1 (iv)], it follows

Wo(P) = U Wo(T"P(NT).

TECnX2 T*T=I,

Similarly, we can see that for any s € {2,3,...,n— 1},

W,(P) = U W, (T*P(\)T).
TeCnxs, T*T=I,
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As a consequence, investigating the boundary of the g-numerical range of a
2 x 2 matrix polynomial is of interest.

Consider now a 2 x 2 matrix polynomial L()\) of degree m. As it has been
shown in [13], the boundary of the numerical range W (L) (= W;(L)) lies on
an algebraic curve of degree at most 4m. In this section, we apply the results
of Section 5 to obtain that the boundary of Wy (L) (0 < ¢ < 1) lies on an
algebraic curve of degree at most 8m.

The matrix polynomial L(A) can be written in the form

_ p1,1(>\) Pl,z()\)
L = p2,1(A) p22(N) |’

where p; ;j(A) (4, = 1,2) are scalar polynomials of degree at most m. Similarly
to the matrix case, define the matrix polynomial

Q) = LY ~ & (pra (M) +p22(N) I

and the scalar polynomials

fL) = SRelra(N) +paa(N),
) = 3O+ p2a()
ah) = trace@R) = 5 Re(pri() +poaOE + 3 [p1a() +poa O] |
BA) = trace(QNZ) = 3 [m(pus(N) ~ paa)E + 3 [pra(h) ~paa(V]

c(A) = trace(Q(A\)n Q@(N)sn)

1

= 3 [Re (p1,1(A) = p2,2(A\)] [Im (p1,1(A) — p2,2(A))] + Im (p1,2(A)p2,1(N)) -

Theorem 10 Suppose that q € (0,1) and L()\) is a 2 X 2 matriz polynomial
as above with Wy (L) # C. Consider the polynomial

Gor(u,v) = q*(cao(u+iv) frlu+iv)* + coalu+iv) gp(u+iv)?

+eza(u+iv) fro(u+iv)® gr(u+iv)

+erz(u+iv) fr(u+iv) gr(u+iv)?

+eap(u+iv) fr(u+iv)?gr(u+iv)?)
+q*(cao(u+1iv) fr(u+iv)? + coo(u+iv) gr(u +iv)?
+epa(u+iv) fo(u+iv) gr(u+iv)) + coo(u+1iv)

in u,v € R of degree at most 8m, where

cao(d) = 4((1—¢*)%aN)? = 2(1 = ¢*)a(N) d(N) +b(N)?
+4(1=¢*)e(N)?),
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co4(N) = 4((1—=¢*)’b(N)? = 2(1 = ¢*)a(N) b(N) +a(N)
+4(1—¢*)e(N)?),

c31(A) = —16¢%c(A) (1 —g*)a(A) +b(N)),
c3(A) = —16¢%(N) ((1—¢*)b(A) +a(X),
c22(A) = 8[(1—=¢*)(a(A\)? +bA)?) + (4 —4¢*+2¢")c(N)?
+(=242¢> + ¢"a(N) b(N)],
c0N) = 4[-(1—-¢*%a(N)? = (1 —¢*)b(N)?
+(14¢* =3¢ +¢%)a(N)?b(N) + (1 — 46> +2¢")a(N) b(N)?
+(—4+4¢ 4+ ¢" — ¢®)a(N) (V) + (—4+ 84" —3¢")b(A) c(V)?],
2

co2(N) = 4[=(1-¢*)’b(\)’ — (1 = ¢*)a(V)’

+(1+ ¢ =3¢"+¢%aN) b(A)> + (1 —4¢° +2¢")a(N)?b(N),
+ (=444 +¢" = "N e(V)? + (4 +8¢% = 3¢")a(N) c(V)?],
b(A)?) + (6 — 6% + ¢")a(A) b(N)

+ (=4 +4¢% — g")e(N)?],
coo(A) = [(1=¢*)(a(N)’+bN)?) + (=2+24¢> — ¢*)a(N) b(})
+(4—4¢*+¢")e(V)?)*

Then the boundary of W4(L) lies on the curve

(1+
(—4
cii(d) = 8c(N)¢’[(1 - ¢*)(a(N)? +
(—4
q

{u+iveC:u,veR, Gy r(u,v) =0}

Proof By Theorem 1 (i), every boundary point p of W,(L) satisfies the con-
dition 0 € 9F,(L(u)). Then the result follows readily from Theorem 9. O

Finally, we present an illustrative example (see also [15]).

Example Consider the 2 x 2 self-adjoint matrix polynomial
L) = LA + A1) + Ay,
where )
Ay = _1?4/5 113/5} and Ay = [3{2 3}2]

Notice that for all unit vectors z,y € C?, y*L(\)z = 2*L(\)y and y*z = z*y.
Hence, for every ¢ € [0, 1], the q—numerlcal range of L(A) is symmetric with
respect to the real axis (this is true of all self-adjoint matrix polynomials).

For ¢ € (0,1] sufficiently close to 1, the boundary of W, (L) is given by
{uxiveC:u,veR,v>0,Gyr(u,v) =0},
where

Gor(u,v) = 2500 — 8125 ¢* + 5625 ¢* + /1 — ¢2(28000 — 45500 ¢°)v
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+ (39200 — 90800 ¢* + 51600 ¢*)u?

+ (117600 — 154200 ¢* + 12100 ¢*)v?
+1/1 — ¢2(219520 — 151760 ¢*)u’v

+ /1 — ¢2(219520 — 67760 ¢*)v>

+ (153664 — 214964 ¢* + 61300 ¢*)u?

+ (307328 — 312328 ¢* + 53800 ¢*)u?v?

+ (153664 — 97364 ¢> + 2500 ¢*)v*

— /1= 22800 ¢*uv®

— 14000 ¢> /1 — ¢2(uv + v°) 4+ 19600(¢* — ¢*)u’
— (58800 ¢* — 39200 ¢*)u*v?

— (58800 ¢* — 19600 ¢*)u?v* — 19600 ¢*v°.

Imaginary Axis
o

-2t

-3
Real Axis

Figure 1: A connected g-numerical range.

If we choose ¢1 = 99/101, then G, 1 (u,v) is ascalar multiple of the polynomial

Ggu.o(u,v) = 118512500 + 3238413500 v + 423409600 u?
+20170918245 v? — 15188859952 u?v — 31819196752 v3
— 386690065 ut — 59221277000 u?v? — 64960336444 v*

+ 5543445600 uv3 4+ 2771722800 u*v 4 2771722800 v°

+ 768398400 u® + 21132876996 u*v? + 39960558792 uZv?
+ 19596080 v°.

The gi-numerical range

W, (L) = {utiveC:uveR,v>0,Gq 1(u,v) <0}
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is sketched in Figure 1; its boundary intersects the real axis (i.e., v = 0) at four
points. By the equation

Gy .n(u,0) = 4 (196 u? + 25)(980100 u* — 5057284 u” + 1185125) = 0,
it follows that these points are (u,v) = (£2.2167,0), (£0.4961,0). O
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