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Abstract

The q-numerical range (0 ≤ q ≤ 1) of an n × n matrix polynomial
P (λ) = Amλm + · · ·+ A1λ + A0 is defined by

Wq(P ) = {λ ∈ C : y∗P (λ)x = 0, x, y ∈ Cn, x∗x = y∗y = 1, y∗x = q}.

In this paper, we investigate the boundary and the shape of Wq(P ), using
the notion of local dimension. We also obtain that the q-numerical range
of first order matrix polynomials is always simply connected. Moreover,
the special cases of 2×2 matrices and matrix polynomials are considered.
In particular, the boundary of the q-numerical range of a 2 × 2 matrix
polynomial of degree m lies on an algebraic curve of degree at most 8m.

Keywords: boundary; connectedness; eigenvalue; ellipse; local dimension; matrix poly-
nomial; q-numerical range
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1 Introduction

Consider a differential equation of the form

Amg(m)(t) + Am−1g
(m−1)(t) + · · ·+ A1g

(1)(t) + A0g(t) = f(t), (1)

where Aj ∈ Cn×n (j = 0, 1, . . . ,m), g(t) ∈ Cn is the unknown vector function
and f(t) ∈ Cn is piecewise continuous (the indices on g(t) denote derivatives
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with respect to the independent variable t). Applying the Laplace transforma-
tion yields the associated matrix polynomial

P (λ) = Amλm + Am−1λ
m−1 + · · ·+ A1λ + A0, (2)

where λ is a complex variable. As a consequence, the spectral analysis of P (λ)
leads to the solutions of (1). The suggested references are [5, 16].

If all the coefficients of P (λ) are Hermitian matrices, then P (λ) is called
self-adjoint. A scalar λ0 ∈ C is said to be an eigenvalue of P (λ) in (2) if the
system P (λ0)x = 0 has a nonzero solution x0 ∈ Cn. This solution x0 is known
as an eigenvector of P (λ) corresponding to λ0, and the set of all eigenvalues of
P (λ) is the spectrum of P (λ), namely, σ(P ) = {λ ∈ C : detP (λ) = 0}. For a
real q ∈ [0, 1], the q-numerical range of P (λ) is defined by

Wq(P ) = {λ ∈ C : y∗P (λ)x = 0, x, y ∈ Cn, x∗x = y∗y = 1, y∗x = q}. (3)

Clearly, Wq(P ) is always closed and contains the spectrum σ(P ). It is also easy
to see that if q = 0, then Wq(P ) = C. For q ∈ (0, 1] and P (λ) = q−1Iλ− A,
Wq(P ) coincides with the q-numerical range of matrix A [1, 8, 9],

Fq(A) = {y∗Ax : x, y ∈ Cn, x∗x = y∗y = 1, y∗x = q}.

Moreover, for q = 1, we have the (classical) numerical range of P (λ), that is,

W (P ) ≡ W1(P ) = {λ ∈ C : x∗P (λ)x = 0, x ∈ Cn, x∗x = 1},

and the numerical range (also known as field of values) of matrix A,

F (A) ≡ F1(A) = {x∗Ax : x ∈ Cn, x∗x = 1}.

During the last decade, the numerical range W (P ) has attracted attention,
and several results have been obtained (see e.g., [2, 3, 6, 7, 10, 11, 13]). These
results are helpful in studying and understanding matrix polynomials, and some
of them have been generalized to the case of q-numerical range [14, 15]. If
q ∈ (0, 1], then the q-numerical range Wq(P ) in (3) is not always connected,
and it is bounded if and only if 0 /∈ Fq(Am) [10, 14]. If µ ∈ C is a boundary
point of Wq(P ), then the origin is also a boundary point of the range Fq(P (µ))
[11, 14]. Furthermore, for any q ∈ [0, 1], W (P ) ⊆ Wq(P ), and consequently, all
the known applications of W (P ) (and its connected components) on the spectral
analysis and the factorization of P (λ) are also valid for Wq(P ) (see [15] and the
references therein).

In this article, we continue the study of the q-numerical range Wq(P ), ex-
tending recent results on the boundary and the geometry of the classical numeri-
cal range of matrix polynomials [6, 13]. In Section 2, we investigate the boundary
of Wq(P ) and obtain that, if the coefficients of P (λ) are not all scalar multiplies
of the same matrix, then for 0 < q < 1, Wq(P ) has a nonempty interior. In
Section 3, it is proved that for 0 < q < 1, every non-isolated point λ0 of Wq(P ),
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which does not belong to the q-numerical range of the derivative P (1)(λ), has
local dimension 2, i.e., there exists a sequence {µk}k∈N ∈ IntWq(P ) converg-
ing to λ0. Moreover, as it is shown in Section 4, the q-numerical range of a
linear pencil P (λ) = Aλ− B is always simply connected. In Sections 5 and 6,
we study the q-numerical range of 2× 2 matrices and matrix polynomials. For
a 2 × 2 general complex matrix A, we give an explicit formula for Fq(A) and
obtain a necessary algebraic condition for the origin to be a boundary point of
Fq(A). As a consequence, if the q-numerical range of a 2×2 matrix polynomial
of degree m does not coincide with the complex plane, then its boundary lies
on an algebraic curve of total degree at most 8m.

2 Boundary

Consider an n× n matrix polynomial P (λ) = Amλm + · · ·+ A1λ + A0 and a
real q ∈ (0, 1]. In the following theorem, we characterize the boundary ∂Wq(P ),
extending a known result on W (P ).

Theorem 1 (For q = 1, see [6, Theorem 2])
Let P (λ) be an n× n matrix polynomial and let 0 < q ≤ 1.

(i) If λ0 is a boundary point of Wq(P ), then 0 ∈ ∂Fq(P (λ0)).

(ii) If 0 ∈ ∂Fq(P (λ0)), P (λ0) 6= 0 and 0 /∈ Fq(P (1)(λ0)), then λ0 ∈ ∂Wq(P ).

Proof For statement (i), see [14, Theorem 2.2]. For the second statement,
assume that 0 ∈ ∂Fq(P (λ0)) and λ0 ∈ IntWq(P ). Then there is a real ε > 0
such that for every µ ∈ C with |µ − λ0| ≤ ε, there exist two unit vectors
xµ, yµ ∈ Cn satisfying y∗µP (µ)xµ = 0 and y∗µxµ = q. Moreover,

y∗µ{P (λ0) + (µ− λ0)P (1)(λ0) + (µ− λ0)R(µ, λ0)}xµ = 0,

where ‖R(µ, λ0)‖ = o(1) as |µ − λ0| → 0. The convexity of the q-numerical
range of matrices and the arguments of the proof of [6, Theorem 2] imply that
λ0 is a boundary point of Wq(P ). ¤

Remark 1 It is worth noting that the first statement of the above theorem
holds also for continuous matrix functions and statement (ii) is true for analytic
matrix functions. This follows readily from their proofs.

In general, for a real 0 < q < 1, the q-numerical range Wq(P ) has a
nonempty interior. The next lemma is necessary and of independent interest.

Lemma 2 Let P (λ) = Amλm + · · ·+A1λ+A0 be an n×n matrix polynomial
and let q1 ∈ (0, 1] such that for every µ ∈ Wq1(P ), P (µ) is a scalar matrix.
Then there is an n×n matrix A with 0 /∈ Fq1(A) and a scalar polynomial p(λ)
such that P (λ) = Ap(λ). In particular, for every q ∈ (0, 1], Wq(P ) = {λ ∈ C :
p(λ) = 0} = σ(P ) when 0 /∈ Fq(A), and Wq(P ) = C when 0 ∈ Fq(A).
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Proof For any µ ∈ Wq1(P ), P (µ) is a scalar matrix such that 0 ∈ Fq1(P (µ)).
Hence, µ ∈ Wq1(P ) implies P (µ) = 0. Since P (λ) is a nonzero matrix poly-
nomial of degree m, the equation P (λ) = 0 has no more than m roots. Con-
sequently, the numerical range Wq1(P ) is bounded (i.e., 0 /∈ Fq1(Am)) and
consists of s ≤ m isolated points, λ1, λ2, . . . , λs. Thus, by [15, Theorem 5]
(see also [11, Theorem 2.1]), the matrix polynomial P (λ) is written in the form
P (λ) = Ap(λ), where A = Am and p(λ) = (λ− λ1)k1(λ− λ2)k2 · · · (λ− λs)ks

(with k1 + k2 + · · ·+ ks = m). ¤

Notice that if P (λ) = A p(λ) for some A ∈ Cn×n with 0 ∈ Fq(A) and a
scalar polynomial p(λ), then Wq(P ) = C but P (λ) is not necessarily a scalar
matrix for every λ ∈ C.

Theorem 3 Let P (λ) be an n × n matrix polynomial as in (2) and let 0 <
q < 1. The q-numerical range Wq(P ) has no interior points if and only if there
exist a matrix A and a scalar polynomial p(λ) such that P (λ) = Ap(λ) and
0 /∈ Fq(A).

Proof Suppose that P (λ) is written in the form P (λ) = Ap(λ), where A is an
n × n matrix with 0 /∈ Fq(A), and p(λ) is a scalar polynomial. Then clearly,
the q-numerical range of P (λ) is

Wq(P ) = {λ ∈ C : p(λ) = 0} = σ(P ),

and thus, it has no interior points.
Conversely, assume that Wq(P ) has no interior points and there exists a

λ0 ∈ W1(P ) such that P (λ0) is not a scalar matrix. Since q < 1, by [8, Theorem
2.5], it follows that 0 ∈ qF1(P (λ0)) ⊂ IntFq(P (λ0)), i.e., the origin lies in the
interior of Fq(P (λ0)). Hence, by Theorem 1 (i) (see also [14, Theorem 2.2]), λ0

is an interior point of Wq(P ). This is a contradiction, and consequently, P (λ)
satisfies the conditions of Lemma 2 for q1 = 1. The proof is complete. ¤

3 Local dimension

Let Ω be a closed subset of C and let ω ∈ Ω. The local dimension of the point
ω in Ω is defined by

lim
h→0+

dim {Ω ∩ S(ω, h)} (h > 0),

where dim{·} is the topological dimension and S(ω, h) denotes the closed circular
disk with centre at ω and radius equal to h. The local dimension of ω ∈ Ω
takes the value 0 when ω is an isolated point of Ω, the value 2 when there
exists a sequence {µk}k∈N ∈ IntΩ converging to ω, and the value 1 otherwise.
It is important to remark that for 0 < q < 1, all the points of the q-numerical
range of a non-scalar matrix A ∈ Cn×n have local dimension 2 (in Fq(A)) [8, 9].
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On the other hand, the numerical range F (A) (≡ F1(A)) is a line segment if
and only if A is a normal matrix with colinear eigenvalues.

Consider a matrix polynomial P (λ) as in (2) and a real q ∈ (0, 1). Then
in general, the local dimension of any λ0 in Wq(P ) \Wq(P (1)) is 2. The only
exception is the isolated points of Wq(P ) (if any).

Theorem 4 (For q = 1, see [13, Theorems 1 and 2])
Let P (λ) = Amλm + · · ·+A1λ+A0 be an n×n matrix polynomial, q ∈ (0, 1)
and let λ0 ∈ Wq(P ) \Wq(P (1)). Then either λ0 is an isolated point of Wq(P ),
or the local dimension of λ0 in Wq(P ) is equal to 2.

Proof Assume that λ0 is not an isolated point of Wq(P ) and the local di-
mension of λ0 in Wq(P ) is 1. Obviously, λ0 belongs to ∂Wq(P ) and there is
a real r0 > 0 such that Wq(P ) ∩ S(λ0, r0) is a curve lying on ∂Wq(P ). By
Theorem 1 (i), the origin is a boundary point of Fq(P (λ0)). Since λ0 is not
an isolated point of the closed set Wq(P ), if P (λ0) = 0, then the polynomial
P (λ) is written P (λ) = (λ − λ0)Q(λ), where Q(λ) is a matrix polynomial of
degree m− 1 and λ0 ∈ Wq(Q). Consequently, λ0 ∈ Wq(P (1)); a contradiction.
Hence, P (λ0) 6= 0, Fq(P (λ0)) is convex with a nonempty interior and 0 is a
differentiable point of ∂Fq(P (λ0)) [8, 9]. Thus, there exists a straight line ε0

passing through the origin and defining two closed half planes H1 and H2 such
that Fq(P (λ0)) ⊂ H1.

For every r ∈ [0, r0] and ϑ ∈ [0, 2π], either λ0 + reiϑ /∈ Wq(P ), or λ0 + reiϑ ∈
∂Wq(P ). Then by Theorem 1, for every r ∈ [0, r0] and ϑ ∈ [0, 2π], either
0 /∈ Fq(P (λ0 + reiϑ)), or 0 ∈ ∂Fq(P (λ0 + reiϑ)). Moreover, the origin does not
belong to the convex set Fq(P (1)(λ0)) and the matrix P (λ0 + reiϑ) is written

P (λ0 + reiϑ) = P (λ0) + reiϑP (1)(λ0) + reiϑR(λ0, r, ϑ),

where ‖R(λ0, r, ϑ)‖ = o(1) as r → 0. Hence, for sufficiently small r, there is a
cone Kr,λ0 = {z ∈ C : ϕ1 ≤ Argz ≤ ϕ2, 0 < ϕ2 − ϕ1 ≤ ψ < π} such that

Fq(P (1)(λ0) + R(λ0, r, ϑ)) ⊂ Kr,λ0\{0}.
Following the steps of the proof of [13, Theorem 1], we obtain that the local
dimension of the origin in Fq(P (λ0)) is equal to 1. This is a contradiction and
the proof is complete. ¤

Remark 2 It is clear from its proof that the above theorem is also valid for
analytic matrix functions.

4 Linear pencils

Consider a linear pencil Aλ−B, where A and B are n× n complex matrices.
By Theorem 4, if q ∈ (0, 1), then the q-numerical range Wq(Aλ−B) is either
a singleton or all of its points have local dimension 2.
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Recall that a bounded connected set Ω ⊂ C is called simply connected if
C\Ω is connected (in particular, Ω has no “holes”). If Ω ⊂ C is unbounded,
then we consider the set Ω ∪ {∞} ⊂ C ∪ {∞} and say that Ω ∪ {∞} is simply
connected if (C∪{∞})\Ω is connected. (Note that the two definitions coincide
when Ω is a bounded subset of C.) By [14], it is known that if q ∈ (0, 1), then
Wq(Aλ−B) is always connected. Furthermore, we have the following result.

Theorem 5 (For q = 1, see [13, Theorems 4 and 5])
Let Aλ − B be a linear pencil, and let q ∈ (0, 1]. If the q-numerical range
Wq(Aλ − B) is bounded, then it is simply connected. If Wq(Aλ − B) is un-
bounded, then Wq(Aλ − B) ∪ {∞} is simply connected in the extended plane
C ∪ {∞}.
Proof Suppose that Wq(Aλ−B) is bounded and assume that it is not simply
connected. Then Wq(Aλ − B) has a “hole”, i.e., there is a complex number
ω0 /∈ Wq(Aλ − B) such that for every ϕ ∈ [0, 2π], there exists a real rϕ > 0
satisfying

ω0 + rϕeiϕ ∈ Wq(Aλ−B).

Since Wq(A(λ+µ)−B) = Wq(Aλ−B)−µ (µ ∈ C), without loss of generality,
we may assume that ω0 = 0. Then 0 /∈ Wq(Aλ−B) and for every ϕ ∈ [0, 2π],
rϕeiϕ ∈ Wq(Aλ − B). Equivalently, 0 /∈ Fq(B) and for every ϕ ∈ [0, 2π],
0 ∈ Fq(Arϕeiϕ −B). Since the origin does not belong to the convex sets Fq(A)
and Fq(B), as in the proof of [13, Theorem 4], there exist an angle ϕ0 ∈ [0, 2π]
and a cone K0 = {z ∈ C : ϑ1 ≤ Argz ≤ ϑ2, 0 < ϑ2 − ϑ1 ≤ ψ < π} such that

Fq(A(rϕ0e
iϕ0)−B) ⊆ rϕ0e

iϕ0Fq(A) + Fq(−B) ⊂ IntK0.

Thus, Fq(A(rϕ0e
iϕ0)−B) does not contain the origin; a contradiction. Hence,

if Wq(Aλ−B) is bounded, then it is also simply connected.
Assume now that the q-numerical range Wq(Aλ−B) is unbounded, that is,

0 ∈ Fq(A) [14]. Since C ∪{∞} (∼= S2) is simply connected, we have nothing to
prove when Wq(Aλ−B) = C. Suppose that there is a λ0 /∈ Wq(Aλ−B). Since
Wq(A(λ+λ0)−B) = Wq(Aλ−B)−λ0, Wq(Aλ−B)∪{∞} is homomorphic to
the set Wq(Aλ−(B−Aλ0))∪{∞}. Hence, we can assume that 0 /∈ Wq(Aλ−B),
or equivalently, 0 /∈ Fq(B). Then one can verify that in the extended plane,
Wq(Bλ − A) =

{
µ−1 : µ ∈ Wq(Aλ−B) ∪ {∞}}. The map Ψ(µ) = µ−1 for

µ ∈ Wq(Aλ−B) and Ψ(∞) = 0 is an homomorphism of Wq(Aλ−B) ∪ {∞}
onto Wq(Bλ−A). By the first part of the proof, the bounded range Wq(Bλ−A)
is simply connected, and since simply connectedness is a topological property,
the proof is complete. ¤

5 Two by two matrix case

In the previous three sections, we investigated qualitative properties of the q-
numerical range of matrix polynomials. However, we are also interested in the
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construction of explicit formulas for the boundary of the q-numerical range
of matrices and matrix polynomials. Unfortunately, there are no currently
known methods for the direct (analytical) computation of the boundary of the
q-numerical range of n×n non-normal matrices for n ≥ 3, and thus, we restrict
ourselves to the 2× 2 case.

For a 2× 2 complex matrix A, consider the Hermitian matrices

Ah =
A + A∗

2
and Ash =

A−A∗

2 i
, (4)

and observe that A = Ah + i Ash. The q-numerical range Fq(A) is a closed
elliptical disk and it is explicitly known for special cases. In particular, we have
the following result [9, 12].

Lemma 6 Suppose that q ∈ [0, 1], A is a 2× 2 complex matrix with zero trace
and the Hermitian matrices Ah and Ash in (4) satisfy trace(AhAsh) = 0.
Then the q-numerical range of A is given by

Fq(A) = {u + i v ∈ C : u, v ∈ R, H0(u, v) ≤ 1},

where

H0(u, v) = 2

(
u√

trace(A2
h) +

√
(1− q2) trace(A2

sh)

)2

+2

(
v√

trace(A2
sh) +

√
(1− q2) trace(A2

h)

)2

.

This lemma allows us to describe the q-numerical range of a 2 × 2 matrix
A with zero trace (see also [1, 9]). To facilitate the presentation, we give the
methodology next. If trace(AhAsh) = 0, then Lemma 6 is directly applicable.
If trace(AhAsh) 6= 0, then we have to rotate the principal axes of the elliptical
disk Fq(A). For any angle θ ∈ [−π, π], we consider the matrices

B(θ) = e−iθA = cos θ A− i sin θ A,

Bh(θ) =
B(θ) + B(θ)∗

2
= cos θ Ah + sin θ Ash

and

Bsh(θ) =
B(θ)−B(θ)∗

2 i
= − sin θ Ah + cos θ Ash.

Then one can verify that

trace(Bh(θ)Bsh(θ)) = − 1
2

sin(2θ)
(
trace(A2

h)− trace(A2
sh)

)

+ cos(2θ) trace(AhAsh).
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If trace(A2
h) = trace(A2

sh), then for θ = π/4,

trace(Bh(π/4)Bsh(π/4)) = − 1
2

(
trace(A2

h)− trace(A2
sh)

)
= 0.

If trace(A2
h) 6= trace(A2

sh), then there is exactly one angle θ0 ∈ (−π/4, π/4)
such that

tan(2θ0) =
2 trace(AhAsh)

trace(A2
h)− trace(A2

sh)
. (5)

For this angle, trace(Bh(θ0)Bsh(θ0)) = 0. Note also that

cos(2θ0) =
1√

1 + tan2(2θ0)
and sin(2θ0) =

tan(2θ0)√
1 + tan2(2θ0)

. (6)

As a consequence,

trace(Bh(θ0)2) = trace((cos θ0 Ah + sin θ0 Ash)2)

=
1
2

(
1 +

1
cos(2θ0)

)
trace(A2

h)

+
1
2

(
1− 1

cos(2θ0)

)
trace(A2

sh) (7)

and

trace(Bsh(θ0)2) = trace((cos θ0 Ah + sin θ0 Ash)2)

=
1
2

(
1− 1

cos(2θ0)

)
trace(A2

h)

+
1
2

(
1 +

1
cos(2θ0)

)
trace(A2

sh). (8)

By the condition Fq(A) = eiθ0Fq(B(θ0)) and Lemma 6, it is clear that

Fq(A) = {u+i v ∈ C : u, v ∈ R, H0(cos θ0 u+sin θ0 v,− sin θ0 u+cos θ0 v) ≤ 1}.
Thus, the boundary of Fq(A) is the ellipse

H0(cos θ0 u + sin θ0 v,− sin θ0 u + cos θ0 v) = 1.

Moreover, straightforward computations yield

H0(cos θ0 u + sin θ0 v,− sin θ0 u + cos θ0 v) = Mq (u2 + v2)

+ Nq [cos(2θ0) (u2 − v2) + 2 sin(2θ0) u v], (9)

where

Mq =

(
1√

trace(Bh(θ0)2) +
√

(1− q2) trace(Bsh(θ0)2)

)2

+

(
1√

trace(Bsh(θ0)2) +
√

(1− q2) trace(Bh(θ0)2)

)2
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and

Nq =

(
1√

trace(Bh(θ0)2) +
√

(1− q2) trace(Bsh(θ0)2)

)2

−
(

1√
trace(Bsh(θ0)2) +

√
(1− q2) trace(Bh(θ0)2)

)2

.

Suppose now that A is a 2 × 2 general complex matrix. At this point and
for the remainder of the section, it is convenient to define

a = trace([Ah − (1/2)trace(Ah)I2]2)
= trace(A2

h)− (1/2)trace(Ah)2,
b = trace([Ash − (1/2)trace(Ash)I2]2) (10)

= trace(A2
sh)− (1/2)trace(Ash)2,

c = trace([Ah − (1/2)trace(Ah)I2][Ash − (1/2)trace(Ash)I2])
= trace(AhAsh)− (1/2)trace(Ah) trace(Ash).

Lemma 7 Consider a 2×2 complex matrix A, and let a, b and c as defined in
(10). Then a b− c2 ≥ 0 and equality holds if and only if A is a normal matrix.

Proof The matrix A is unitarily similar to a matrix with diagonal elements
equal to (1/2) trace(A) [4]. Since trace(A − (1/2)trace(A)I2) = 0, it follows
trace(Ah − (1/2)trace(Ah)I2) = trace(Ash − (1/2)trace(Ash)I2) = 0, and we
may assume that

A =
[

0 α
β 0

]
; α, β ∈ C.

Then we can see that

a = trace(A2
h) =

1
2
|α + β|2 ≥ 0,

b = trace(A2
sh) =

1
2
|α− β|2 ≥ 0

and

c = trace(AhAsh) =
αβ − αβ

2 i
= Im(αβ).

Hence, it is clear that

a b− c2 = trace(A2
h)trace(A2

sh)− trace(AhAsh)2

=
1
4

[|(α + β)(α− β)|2 + (αβ − αβ)2
]

=
1
4

(|α|4 + |β|4 − 2 |α|2|β|2)

=
1
4

(|α|2 − |β|2)2 ≥ 0.
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Moreover, the equality a b − c2 = 0 holds if and only if |α| = |β|, or equiva-
lently, if and only if the matrix A is normal. ¤

The above lemma yields a strong connection between the classical numerical
range and the q-numerical range of 2× 2 matrices.

Theorem 8 Let q ∈ [0, 1) and A be a 2× 2 complex matrix, and let a, b and
c as defined in (10). Then the quantities

αq = a + (1− q2) b + 2
√

(1− q2)(a b− c2)

βq = (1− q2) a + b + 2
√

(1− q2)(a b− c2) (11)
γq = c q2

satisfy the inequality αq βq ≥ γ2
q and there exists a 2× 2 complex matrix Bq

such that

trace(Bq) = q trace(A),
αq = trace([Bq − (1/2)trace(Bq)I2]2h),
βq = trace([Bq − (1/2)trace(Bq)I2]2sh),
γq = trace([Bq − (1/2)trace(Bq)I2]h [Bq − (1/2)trace(Bq)I2]sh)

and
Fq(A) = F (Bq).

Proof By [4], A is unitarily similar to a matrix with diagonal elements equal
to (1/2) trace(A). Moreover, by [4, Property 1.2.3],

Fq

(
A +

1
2

trace(A)I2

)
= Fq(A) +

1
2

q trace(A).

As in the proof of Lemma 7 and without loss of generality, we may assume that

A =
[

0 α
β 0

]
; α, β ∈ C

with
a = trace(A2

h) =
1
2
|α + β|2 ≥ 0,

b = trace(A2
sh) =

1
2
|α− β|2 ≥ 0

and

c = trace(AhAsh) =
αβ − αβ

2 i
= Im(αβ).

Define the angle θ0 = π/4 when a = b, and θ0 ∈ (−π/4, π/4) such that

tan(2θ0) =
2 c

a− b
=

Im(αβ)
Re(αβ)
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when a 6= b (see (5)). Then by (6), it follows

cos(2θ0) =
a− b√

(a− b)2 + 4 c2
and sin(2θ0) =

2 c√
(a− b)2 + 4 c2

.

Moreover, (7) and (8) are written

trace(Bh(θ0)2) =
a + b +

√
(a− b)2 + 4 c2

2

and

trace(Bsh(θ0)2) =
a + b−

√
(a− b)2 + 4 c2

2
,

respectively. Thus, by straightforward computations, (9) implies that the bound-
ary of the q-numerical range Fq(A) is the curve

{u + i v ∈ C : u, v ∈ R, H(u, v) = 0},

where

H(u, v) = (2 b + 4
√

(1− q2)(a b− c2) + 2 a (1− q2))u2

+(2 a + 4
√

(1− q2)(a b− c2) + 2 b (1− q2)) v2

− 4 q2 c u v − 2 (a + b)(2− q2)
√

(1− q2)(a b− c2)
+ (1− q2)(2 c2 − a2 − b2 − 4 a b)
− (2− 2 q2 + q4)(a b− c2). (12)

For the quantities αq, βq and γq in (11), by Lemma 7, it follows that αq ≥
0, βq ≥ 0 and

αq βq − γ2
q = a b− c2 + 2 (a + b)(2− q2)

√
(1− q2)(a b− c2)

+ (1− q2) [(a + b)2 + 2 (a b− c2)]
≥ 0.

Define now the matrix Bq by

Bq =
[

0 (1 +
√

1− q2) α

(1−
√

1− q2)β 0

]

when |α| ≥ |β|, and

Bq =
[

0 (1−
√

1− q2) α

(1 +
√

1− q2)β 0

]

when |α| < |β|. Then trace(Bq) = 0, and we can verify that trace(B2
q,h) = αq,

trace(B2
q,sh) = βq and trace(Bq,hBq,sh) = γq. Furthermore, by [4, Theorem

11



1.3.6], a point u + i v ∈ C (u, v ∈ R) belongs to the boundary of the numerical
range F (Bq) if and only if

2 βq u2 + 2 αq v2 − 4 γq u v − αq βq + γ2
q = 0. (13)

Substituting (11) into (13) yields H(u, v) = 0 for the polynomial H(u, v) in
(12). Consequently, ∂Fq(A) = ∂F (Bq), completing the proof. ¤

Next we describe the boundary of Fq(A) by a quartic equation without use
of any radical expressions such as

√
a b− c2, and give a necessary algebraic

condition for the origin to be a boundary point of Fq(A).

Theorem 9 Suppose that q ∈ [0, 1] and A is a 2× 2 complex matrix. Let

fA =
1
2

Re(trace(A)) and gA =
1
2

Im(trace(A)),

and let a, b and c as defined in (10). If the origin belongs to the boundary of
the q-numerical range Fq(A), then

Gq(A) = q4(c4,0 f4
A + c0,4 g4

A + c3,1 f3
A gA + c1,3 fA g3

A + c2,2 f2
A g2

A)
+ q2(c2,0 f2

A + c0,2 g2
A + c1,1 fA gA) + c0,0 = 0,

where

c4,0 = 4 ((1− q2)2a2 − 2 (1− q2)a b + b2 + 4 (1− q2)c2),
c0,4 = 4 ((1− q2)2b2 − 2 (1− q2)a b + a2 + 4 (1− q2)c2),
c3,1 = − 16 q2c ((1− q2)a + b),
c1,3 = − 16 q2c ((1− q2)b + a),
c2,2 = 8 ((1− q2)(a2 + b2) + (4− 4 q2 + 2 q4)c2 + (−2 + 2 q2 + q4)a b),
c2,0 = 4 [−(1− q2)2a3 − (1− q2)b3 + (1 + q2 − 3 q4 + q6)a2b

+(1− 4 q2 + 2 q4)a b2 + (−4 + 4 q2 + q4 − q6)a c2 + (−4 + 8 q2 − 3 q4)b c2],
c0,2 = 4 [−(1− q2)2b3 − (1− q2)a3 + (1 + q2 − 3 q4 + q6)a b2

+(1− 4 q2 + 2 q4)a2b + (−4 + 4 q2 + q4 − q6)b c2 + (−4 + 8 q2 − 3 q4)a c2],
c1,1 = 8 c q2[(1− q2)(a2 + b2) + (6− 6 q2 + q4)a b + (−4 + 4 q2 − q4)c2],
c0,0 = [(1− q2)(a2 + b2) + (−2 + 2 q2 − q4)a b + (4− 4 q2 + q4)c2]2.

Proof Consider the matrix A0 = A− trace(A)I2 and notice that the origin is
a boundary point of Fq(A) = Fq(A0) + (1/2) q trace(A) if and only if the point

u0 + i v0 = − q

2
trace(Ah)− i

q

2
trace(Ash)

belongs to ∂Fq(A0). By the proof of Theorem 8, a point u + i v ∈ C (u, v ∈ R)
belongs to the boundary ∂Fq(A0) if and only if

H(u, v) = 0,

12



where the polynomial H(u, v) is defined in (12) (recalling that trace(A0) = 0).
Hence, u0 + i v0 ∈ ∂Fq(A0) if and only if

0 = (2 b + 4
√

(1− q2)(a b− c2) + 2 a (1− q2)) u2
0

+(2 a + 4
√

(1− q2)(a b− c2) + 2 b (1− q2)) v2
0

− 4 q2 c u0 v0 − 2 (a + b)(2− q2)
√

(1− q2)(a b− c2)
+ (1− q2)(2 c2 − a2 − b2 − 4 a b)
− (2− 2 q2 + q4)(a b− c2),

where a = trace(A2
0,h), b = trace(A2

0,sh) and c = trace(A0,hA0,sh), or equiva-
lently, if and only if

2
√

(1− q2)(a b− c2)((a + b)(2− q2)− 2u2
0 − 2v2

0)
= (2 b + 2 a (1− q2))u2

0 + (2 a + 2 b (1− q2)) v2
0

− 4 q2 c u0 v0 + (1− q2)(2 c2 − a2 − b2 − 4 a b)
− (2− 2 q2 + q4)(a b− c2).

By straightforward computations and keeping in mind that

u2
0 =

q2

4
trace(Ah)2 = q2 f2

A,

v2
0 =

q2

4
trace(Ash)2 = q2 g2

A

and

u0 v0 =
q2

4
trace(Ah) trace(Ash) = q2 fA gA,

the proof is completed. ¤

6 Two by two matrix polynomial case

Let P (λ) be an n × n matrix polynomial as in (2), and let x, y ∈ Cn be
two unit vectors with y∗x = q ∈ (0, 1] (for q = 1, x = y). Then there
exist an n × 2 matrix T and two vectors wx, wy ∈ C2 such that T ∗T = I2,
x = Twx and y = Twy. Moreover, we have w∗xwx = w∗x(T ∗T )wx = x∗x = 1,
w∗ywy = w∗y(T ∗T )wy = y∗y = 1 and w∗ywx = w∗y(T ∗T )wx = y∗x = q. Hence,
by [14, Proposition 1.1 (iv)], it follows

Wq(P ) =
⋃

T∈Cn×2, T∗T=I2

Wq(T ∗P (λ)T ).

Similarly, we can see that for any s ∈ {2, 3, . . . , n− 1},

Wq(P ) =
⋃

T∈Cn×s, T∗T=Is

Wq(T ∗P (λ)T ).
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As a consequence, investigating the boundary of the q-numerical range of a
2× 2 matrix polynomial is of interest.

Consider now a 2× 2 matrix polynomial L(λ) of degree m. As it has been
shown in [13], the boundary of the numerical range W (L) (≡ W1(L)) lies on
an algebraic curve of degree at most 4m. In this section, we apply the results
of Section 5 to obtain that the boundary of Wq(L) (0 < q < 1) lies on an
algebraic curve of degree at most 8m.

The matrix polynomial L(λ) can be written in the form

L(λ) =
[

p1,1(λ) p1,2(λ)
p2,1(λ) p2,2(λ)

]
,

where pi,j(λ) (i, j = 1, 2) are scalar polynomials of degree at most m. Similarly
to the matrix case, define the matrix polynomial

Q(λ) = L(λ)− 1
2

(p1,1(λ) + p2,2(λ)) I2

and the scalar polynomials

fL(λ) =
1
2

Re(p1,1(λ) + p2,2(λ)),

gL(λ) =
1
2

Im(p1,1(λ) + p2,2(λ)),

a(λ) = trace(Q(λ)2h) =
1
2

[Re (p1,1(λ) + p2,2(λ))]2 +
1
2

∣∣∣p1,2(λ) + p2,1(λ)
∣∣∣
2

,

b(λ) = trace(Q(λ)2sh) =
1
2

[Im (p1,1(λ)− p2,2(λ))]2 +
1
2

∣∣∣p1,2(λ)− p2,1(λ)
∣∣∣
2

,

c(λ) = trace(Q(λ)h Q(λ)sh)

=
1
2

[Re (p1,1(λ)− p2,2(λ))] [Im (p1,1(λ)− p2,2(λ))] + Im (p1,2(λ)p2,1(λ)) .

Theorem 10 Suppose that q ∈ (0, 1) and L(λ) is a 2× 2 matrix polynomial
as above with Wq(L) 6= C. Consider the polynomial

Gq,L(u, v) = q4(c4,0(u + i v) fL(u + i v)4 + c0,4(u + i v) gL(u + i v)4

+ c3,1(u + i v) fL(u + i v)3 gL(u + i v)
+ c1,3(u + i v) fL(u + i v) gL(u + i v)3

+ c2,2(u + i v) fL(u + i v)2 gL(u + i v)2)
+ q2(c2,0(u + i v) fL(u + i v)2 + c0,2(u + i v) gL(u + i v)2

+ c1,1(u + i v) fL(u + i v) gL(u + i v)) + c0,0(u + i v)

in u, v ∈ R of degree at most 8m, where

c4,0(λ) = 4 ((1− q2)2a(λ)2 − 2 (1− q2)a(λ) b(λ) + b(λ)2

+4 (1− q2)c(λ)2),
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c0,4(λ) = 4 ((1− q2)2b(λ)2 − 2 (1− q2)a(λ) b(λ) + a(λ)2

+4 (1− q2)c(λ)2),
c3,1(λ) = − 16 q2c(λ) ((1− q2)a(λ) + b(λ)),
c1,3(λ) = − 16 q2c(λ) ((1− q2)b(λ) + a(λ)),
c2,2(λ) = 8 [(1− q2)(a(λ)2 + b(λ)2) + (4− 4 q2 + 2 q4)c(λ)2

+(−2 + 2 q2 + q4)a(λ) b(λ)],
c2,0(λ) = 4 [−(1− q2)2a(λ)3 − (1− q2)b(λ)3

+(1 + q2 − 3 q4 + q6)a(λ)2b(λ) + (1− 4 q2 + 2 q4)a(λ) b(λ)2

+(−4 + 4 q2 + q4 − q6)a(λ) c(λ)2 + (−4 + 8 q2 − 3 q4)b(λ) c(λ)2],
c0,2(λ) = 4 [−(1− q2)2b(λ)3 − (1− q2)a(λ)3

+(1 + q2 − 3 q4 + q6)a(λ) b(λ)2 + (1− 4 q2 + 2 q4)a(λ)2b(λ),
+(−4 + 4 q2 + q4 − q6)b(λ) c(λ)2 + (−4 + 8 q2 − 3 q4)a(λ) c(λ)2],

c1,1(λ) = 8 c(λ) q2[(1− q2)(a(λ)2 + b(λ)2) + (6− 6 q2 + q4)a(λ) b(λ)
+ (−4 + 4 q2 − q4)c(λ)2],

c0,0(λ) = [(1− q2)(a(λ)2 + b(λ)2) + (−2 + 2 q2 − q4)a(λ) b(λ)
+ (4− 4 q2 + q4)c(λ)2]2.

Then the boundary of Wq(L) lies on the curve

{u + i v ∈ C : u, v ∈ R, Gq,L(u, v) = 0}.

Proof By Theorem 1 (i), every boundary point µ of Wq(L) satisfies the con-
dition 0 ∈ ∂Fq(L(µ)). Then the result follows readily from Theorem 9. ¤

Finally, we present an illustrative example (see also [15]).

Example Consider the 2× 2 self-adjoint matrix polynomial

L(λ) = I2λ
2 + A1λ + A0,

where

A1 =
[

0 i 14/5
− i 14/5 0

]
and A0 =

[
3/2 1
1 3/2

]
.

Notice that for all unit vectors x, y ∈ C2, y∗L(λ)x = x∗L(λ)y and y∗x = x∗y.
Hence, for every q ∈ [0, 1], the q-numerical range of L(λ) is symmetric with
respect to the real axis (this is true of all self-adjoint matrix polynomials).

For q ∈ (0, 1] sufficiently close to 1, the boundary of Wq(L) is given by

{u± i v ∈ C : u, v ∈ R, v ≥ 0, Gq,L(u, v) = 0},

where

Gq,L(u, v) = 2500− 8125 q2 + 5625 q4 +
√

1− q2(28000− 45500 q2)v
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+(39200− 90800 q2 + 51600 q4)u2

+(117600− 154200 q2 + 12100 q4)v2

+
√

1− q2(219520− 151760 q2)u2v

+
√

1− q2(219520− 67760 q2)v3

+(153664− 214964 q2 + 61300 q4)u4

+(307328− 312328 q2 + 53800 q4)u2v2

+(153664− 97364 q2 + 2500 q4)v4

−
√

1− q2 2800 q2u2v3

− 14000 q2
√

1− q2(u4v + v5) + 19600(q4 − q2)u6

− (58800 q2 − 39200 q4)u4v2

− (58800 q2 − 19600 q4)u2v4 − 19600 q2v6.

−3 −2 −1 0 1 2 3
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Figure 1: A connected q-numerical range.

If we choose q1 = 99/101, then Gq1,L(u, v) is a scalar multiple of the polynomial

Ĝq1,L(u, v) = 118512500 + 3238413500 v + 423409600 u2

+20170918245 v2 − 15188859952 u2v − 31819196752 v3

− 386690065 u4 − 59221277000 u2v2 − 64960336444 v4

+5543445600 u2v3 + 2771722800 u4v + 2771722800 v5

+768398400 u6 + 21132876996 u4v2 + 39960558792 u2v4

+19596080 v6.

The q1-numerical range

Wq1(L) = {u± i v ∈ C : u, v ∈ R, v ≥ 0, Ĝq1,L(u, v) ≤ 0}
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is sketched in Figure 1; its boundary intersects the real axis (i.e., v = 0) at four
points. By the equation

Ĝq1,L(u, 0) = 4 (196 u2 + 25)(980100 u4 − 5057284 u2 + 1185125) = 0,

it follows that these points are (u, v) ∼= (±2.2167, 0), (±0.4961, 0). ¤
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