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Abstract

We introduce and study an envelope-type region E(A) in the complex plane
that contains the eigenvalues of a given n × n complex matrix A. E(A) is the
intersection of an infinite number of regions defined by cubic curves. The notion
and method of construction of E(A) extend the notion of the numerical range of
A, F (A), which is known to be an intersection of an infinite number of half-planes;
as a consequence, E(A) is contained in F (A) and represents an improvement in
localizing the spectrum of A.
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1 Introduction

It is well known that the real part of each eigenvalue of a matrix A ∈ C
n×n is

bounded above by the largest eigenvalue, say δ1(A), of the hermitian part of A. As
a consequence, the spectrum of A lies in the intersection of all half-planes of the
form

{

e−i θ(s + i t) : s, t ∈ R with s ≤ δ1(e
i θA)

}

, θ ∈ [0, 2π]. In fact, this infinite
intersection of half-planes coincides with the numerical range of A, F (A).

The purpose of this paper is to improve upon the above spectrum localization
result. We will achieve this by replacing the infinite intersection of half-planes by
an infinite intersection of regions in the complex plane, which are defined by cubic
curves. These cubic curves are obtained by an inequality that all eigenvalues of A
must satisfy [1]. The outcome is a localization region for the spectrum of A that is
contained in F (A), and it can in fact be quite smaller. We will refer to this region as
the cubic envelope (or, for simplicity, just envelope) of A, study its basic properties
and compare it to the numerical range F (A).
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In Section 2 we describe some of the basic properties of the numerical range
needed in our analysis. Section 3 contains a discussion about the cubic curve studied
in [1] that bounds the spectrum, along with an answer (see Theorem 3.2) to a question
arising in [1]. In Sections 4 and 5, we define and develop the properties of the envelope
of A as a containment region of the spectrum of A. Our results and concepts are
illustrated with several examples and figures.

2 Preliminaries on the numerical range

Let A ∈ C
n×n be an n × n complex matrix with spectrum

σ(A) = {λ ∈ C : det(λIn − A) = 0} ,

where In denotes the n × n identity matrix. Consider also the hermitian and skew-

hermitian parts of A, H(A) = (A + A∗)/2 and S(A) = (A − A∗)/2, respectively, and
let δ1(A) ≥ δ2(A) ≥ · · · ≥ δn(A) denote the eigenvalues of H(A). The numerical

range (also known as the field of values) of A is defined as

F (A) = {v∗Av ∈ C : v ∈ C
n with v∗v = 1} ;

it is a compact and convex subset of C that contains σ(A) (see [3] and the references
therein). Moreover, the following well-known properties of F (A) hold [3].

(P1) For any A ∈ C
n×n, F (AT ) = F (A) and F (A∗) = F (A) = F (A). In particular,

if A is a real matrix, then F (A) is symmetric with respect to the real axis.

(P2) For any a, b ∈ C, F (aA + bIn) = aF (A) + b.

(P3) For any unitary matrix U ∈ C
n×n, F (U∗AU) = F (A).

(P4) The numerical ranges of the hermitian and skew-hermitian parts of A satisfy
F (H(A)) = ReF (A) and F (S(A)) = i ImF (A).

(P5) If A is normal, then F (A) coincides with the convex hull of σ(A), Co(σ(A)).
Moreover, A is hermitian if and only if F (A) = F (H(A)) = [δn(A), δ1(A)].

(P6) For any unit vector v0 ∈ C
n (i.e., v∗0v0 = 1), the following are equivalent:

(i) Re {v∗0Av0} = max{Re z : z ∈ F (A)},
(ii) v∗0H(A)v0 = max{h : h ∈ F (H(A))}, and

(iii) H(A)v0 = δ1(A)v0.

By Property (P6), we have that

max{Re z : z ∈ F (A)} = max{s : s ∈ F (H(A))} = δ1(A),

that is, the largest eigenvalue of H(A) coincides with the real part of the right most
point of F (A). Furthermore, if y1 ∈ C

n is a unit eigenvector of H(A) corresponding
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to δ1(A), then the right most point of F (A) is y∗1Ay1 and the vertical line L0 = {z ∈
C : Re z = δ1(A)} is tangential to F (A) at y∗1Ay1.

Based on the latter observation, Johnson [4] (see also [3, Section 1.5]) proposed
an algorithm for the estimation of the numerical range by computing (and plotting)
its boundary points. Specifically, for each angle θ ∈ [0, 2π], we consider the largest
eigenvalue δ1(e

i θA) and an associated unit eigenvector y1(θ) of the hermitian matrix
H(ei θA). Then the point zθ = y1(θ)

∗Ay1(θ) lies on the boundary of F (A), denoted
by ∂F (A), and the line

Lθ = {e−i θ(δ1(e
i θA) + i t) : t ∈ R}

= {t sin θ + δ1(e
i θA) cos θ + i (t cos θ − δ1(e

i θA) sin θ) : t ∈ R}

is tangential to F (A) at zθ. Moreover, line Lθ separates the complex plane into the
closed half-plane

Hin(ei θA) = {e−i θ(s + i t) : s, t ∈ R with s ≤ δ1(e
i θA)},

which contains F (A), and the open half-plane

Hout(e
i θA) = {e−i θ(s + i t) : s, t ∈ R with s > δ1(e

i θA)}.

Thus, we may represent F (A) as an infinite intersection of closed half-planes (see
Theorem 1.5.12 of [3]), namely,

F (A) =
⋂

θ∈[0,2π]

Hin(ei θA). (1)

In particular, we can estimate F (A) simply by drawing the tangent lines Lθj
,

j = 1, 2, . . . , k, for a partition 0 = θ1 < θ1 < · · · < θk−1 < θk = 2π of the interval
[0, 2π]. This is illustrated in our first example below.

Example 2.1. Consider the complex Toeplitz matrix

A =









1 1 0 i
2 1 1 0
3 2 1 1
4 3 2 1









.

The boundary of the numerical range F (A) is sketched in the left part of Figure 1.
In the right part of the figure, F (A) is illustrated as an envelope of 120 tangent lines.
Here, and in all figures of the paper, the eigenvalues are marked with +’s.

In the sequel, our goal is to replace the tangent lines by cubic curves, introducing
an envelope-type set that contains the spectrum and lies in the numerical range. We
note in passing that another subset of F (A) that contains the eigenvalues, known as
the block numerical range, has been studied extensively; see [9] and [10]. There is no
tractable relation known to us between the block numerical range and the envelope.
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Figure 1: The numerical range of a 4 × 4 Toeplitz matrix.

3 A cubic curve that bounds the spectrum

Let A be an n × n complex matrix, and recall that by y1 ∈ C
n we denote a unit

eigenvector of the hermitian matrix H(A) corresponding to its largest eigenvalue
δ1(A). Define also the quantities

v(A) = ‖S(A)y1‖2
2 and u(A) = Im(y∗1S(A)y1) ≤ ‖S(A)y1‖2 =

√

v(A).

Adam and Tsatsomeros [1, Theorem 3.1], extending the methodology of [6], ob-
tained the following theorem.

Theorem 3.1. Let A ∈ C
n×n. Then for every eigenvalue λ ∈ σ(A),

(Reλ − δ2(A))(Imλ − u(A))2 ≤ (2)

(δ1(A) − Reλ)[v(A) − u(A)2 + (Reλ − δ2(A))(Reλ − δ1(A))].

Motivated by the above result, the authors of [1] also introduced and studied the
algebraic curve

Γ(A) =
{

s + i t : s, t ∈ R, (δ2(A) − s)[(δ1(A) − s)2 + (u(A) − t)2]

+ (δ1(A) − s)(v(A) − u(A)2) = 0
}

= {δ1(A) + i u(A)} ∪
{

s + i t 6= δ1(A) + i u(A) : s, t ∈ R, δ2(A) − s +
(δ1(A) − s)(v(A) − u(A)2)

(δ1(A) − s)2 + (u(A) − t)2
= 0

}

.

This is a cubic algebraic curve in s, t ∈ R, which separates the complex plane into the
regions

Γin(A) =
{

s + i t : s, t ∈ R, (δ2(A) − s)[(δ1(A) − s)2 + (u(A) − t)2]

+ (δ1(A) − s)(v(A) − u(A)2) ≥ 0
}

.
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and

Γout(A) =
{

s + i t : s, t ∈ R, (δ2(A) − s)[(δ1(A) − s)2 + (u(A) − t)2]

+ (δ1(A) − s)(v(A) − u(A)2) < 0
}

.

These types of cubic curves have been extensively studied; a suggested general refer-
ence is [7]. Below we analyze some of the geometric features of Γ(A).

By Theorem 3.1, it is apparent that σ(A) ⊂ Γin(A). Furthermore, if s > δ1(A) or
s < δ2(A), then s+i t (t ∈ R) cannot satisfy the defining equation of Γ(A). Thus, the
curve Γ(A) lies in the vertical zone {z ∈ C : δ2(A) ≤ Re z ≤ δ1(A)}. It is also clear
that (always for s, t ∈ R)

s + i t ∈ Γ(A) if and only if s + i (2u(A) − t) ∈ Γ(A),

and
s −→ δ2(A) , as t −→ ±∞.

Thus, the curve Γ(A) is symmetric with respect to the horizontal line

L = {z ∈ C : Im z = u(A)}

which it intercepts at the point δ1(A) + i u(A), and is asymptotic to the vertical line
{z ∈ C : Re z = δ2(A)}. Note that point δ1(A) + i u(A) is a right most point of the
numerical range F (A).

Recall that a flat portion of the boundary of F (A) is a maximal (in the sense
of set inclusion) non-degenerate line segment that belongs entirely to ∂F (A) [2]. By
Property (P6), it follows that if ∂F (A) has a flat portion on the vertical line L0 =
{z ∈ C : Re z = δ1(A)}, then δ1(A) = δ2(A), the curve Γ(A) reduces to the line L0,
and the region Γin(A) coincides with the half-plane Hin(A).

When δ1(A) > δ2(A), it is apparent that δ1(A) + i u(A) is the unique right most
point of Γ(A), i.e., the only point of the curve with real part equal to δ1(A). Moreover,
the vertical line L0 is tangential to Γ(A) at δ1(A) + i u(A). This means that L0 is a
common tangent to the curve Γ(A) and the numerical range F (A) at δ1(A) + i u(A).

For t = u(A) and δ2(A) < s < δ1(A), the defining equation of Γ(A) is

(δ1(A) − s)[s2 − (δ1(A) + δ2(A))s + δ1(A)δ2(A) + v(A) − u(A)2] = 0.

The discriminant of the quadratic factor in this expression is

∆ = (δ1(A) − δ2(A))2 − 4(v(A) − u(A)2).

Thus, we have the following cases, which are illustrated in Figure 2.

(a) If ∆ < 0, then Γ(A) intercepts the horizontal line L only once, at δ1(A) + i u(A),
and is an unbounded simple open curve.
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(b) If ∆ = 0, then Γ(A) is a folium of Descartes and intercepts L at

δ1(A) + δ2(A)

2
+ i u(A) and δ1(A) + i u(A),

where the first point (double root) is the node point (cusp) of Γ(A).

(c) If ∆ > 0, then Γ(A) comprises two branches, an open unbounded branch and a
closed bounded branch, and it intercepts line L at

δ1(A) + δ2(A) −
√

∆

2
+i u(A),

δ1(A) + δ2(A) +
√

∆

2
+i u(A), and δ1(A)+i u(A).

In cases (a) and (c), Γ(A) is a nonsingular elliptic curve [7]. When ∆ < 0 and
Γ(A) is an open simple curve, all eigenvalues of A lie to the left of Γ(A). When ∆ > 0,
then, as shown in the next theorem, the closed branch of Γ(A) encompasses exactly
one eigenvalue of A, while the remaining eigenvalues of A must lie to the left of the
(unbounded) open branch of Γ(A).

Theorem 3.2. Suppose that δ1(A) is a simple eigenvalue of H(A) and ∆ > 0, i.e.,

Γ(A) is not connected and has a closed branch. Then exactly one eigenvalue of A,

which is simple, lies inside or on the closed branch of Γ(A).

Proof. Consider the Levinger transformation of A (see [5, 8])

L(A, r) = (1 − r)A + rA∗ = H(A) + (1 − 2 r)S(A) ; r ∈ [0, 1/2].

Observe that v(L(A, r)) = (1 − 2 r)2v(A) and u(L(A, r)) = (1 − 2 r)u(A), and hence,
v(L(A, r))−u(L(A, r))2 = (1−2 r)2(v(A)−u(A)2). Furthermore, all matrices L(A, r),
r ∈ [0, 1/2], have hermitian part H(A) and so, δ1(L(A, r)) and δ2(L(A, r)) are constant
as functions of r. As a consequence, for every r ∈ [0, 1/2], the curve Γ(L(A, r)) is not
connected, consisting of an (unbounded) open branch and a (bounded) closed branch;
see case (c) above.

Since δ1(A) is a simple eigenvalue of H(A), the point δ1(A) + i u(A) is the unique
right most point of F (A). By continuity of the eigenvalues, there is an r1 ∈ [0, 1/2)
such that the right most eigenvalue of L(A, r), as a function of r ∈ [r1, 1/2], say
λ(r), is simple and forms a continuous path in C with endpoints λ(r1) and λ(1/2) =
δ1(A). By the above discussion (and keeping in mind that the nonnegative quantity
v(L(A, r)) − u(L(A, r))2 can be arbitrarily small as r −→ 1/2), it follows that for
some r2 ∈ [r1, 1/2) sufficiently close to 1/2, the curve Γ(L(A, r2)) is not connected
and the simple eigenvalue λ(r2) of L(A, r2) is the only eigenvalue of L(A, r2) that lies
inside or on the closed branch of Γ(L(A, r2)).

Let now r ∈ [0, r2] and r −→ 0. Since Γ(L(A, r)), r ∈ [0, r2], remains disconnected,
the continuity of the eigenvalues implies that there is exactly one (simple) eigenvalue
of L(A, r) lying inside or on the closed branch of Γ(L(A, r)).

The three situations described in (a)–(c) above and Theorem 3.2 are illustrated
in Figure 2 for three appropriately chosen 3 × 3 matrices.
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Figure 2: The cases of Γ(A) with ∆ < 0 (left), ∆ = 0 (middle), and ∆ > 0 (right).

4 An envelope of the spectrum

In the previous section, we saw that the spectrum of an n× n complex matrix A lies
in the region Γin(A). We will take advantage of this fact by considering all rotations
ei θA (θ ∈ [0, 2π]) in order to define a region in C that contains the spectrum of A.
Indeed, for any θ ∈ [0, 2π], we have

σ(A) = e−i θσ(ei θA) ⊆ e−i θΓin(ei θA) ⊆ Hin(ei θA). (3)

As a consequence, we define the cubic envelope (or simply, the envelope) of A, as

E(A) =
⋂

θ∈[0,2π]

e−i θΓin(ei θA).

Then (1) and (3) yield the following.

Theorem 4.1. For any matrix A ∈ C
n×n,

σ(A) ⊆ E(A) =
⋂

θ∈[0,2π]

e−i θΓin(ei θA) ⊆
⋂

θ∈[0,2π]

Hin(ei θA) = F (A).

Example 4.2. Recall the 4 × 4 Toeplitz matrix A of Example 2.1. The numerical
range of A is drawn as an envelope of 120 tangent lines on the left of Figure 3. In the
right part of the figure, E(A) is the unshaded region resulting from having drawn 120
curves e−i θΓ(ei θA). Notice that the cubic envelope E(A) consists of two connected
components, and is a significantly improved localization of the spectrum of A as
compare to F (A).

We remark that the numerical range F (A) appears, as a by-product, in all of our
plots of the envelope E(A); specifically, F (A) is depicted as the outer outlined region.
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Figure 3: The numerical range F (A) (left), and the cubic envelope E(A) (right).

In light of Theorem 4.1, we will subsequently study the properties of E(A). To
begin, the envelope E(A) is compact, since it is a closed subset of the compact numer-
ical range F (A). It is not (necessarily) convex or connected, as illustrated in Example
4.2, but it satisfies some of the other basic properties of F (A) and, more importantly,
of σ(A).

Proposition 4.3. For any A ∈ C
n×n, the following hold:

(i) Γ(AT ) = Γ(A) and E(AT ) = E(A);

(ii) Γ(A∗) = Γ(A) = Γ(A) and E(A∗) = E(A) = E(A).

Proof. (i) Since AT = H(A)T +S(A)T , it follows that δ1(A
T ) = δ1(A), δ2(A

T ) = δ2(A)
and y1 is a unit eigenvector of H(A)T corresponding to δ1(A

T ). Hence, v(AT ) = v(A)
and u(AT ) = u(A), and consequently, Γ(AT ) = Γ(A).

For the envelope of AT , we have

E(AT ) =
⋂

θ∈[0,2π]

e−i θΓin(ei θAT ) =
⋂

θ∈[0,2π]

e−i θΓin((ei θA)T ) = E(A).

(ii) Since A∗ = H(A)∗+S(A)∗ = H(A)−S(A), it is apparent that δ1(A
∗) = δ1(A),

δ2(A
∗) = δ2(A), v(A∗) = v(A) and u(A∗) = −u(A). As a consequence, Γ(A∗) = Γ(A).

For the envelope of A∗, it holds that

E(A∗) =
⋂

θ∈[0,2π]

e−i θΓin(ei θA∗) =
⋂

θ∈[0,2π]

ei θΓin((ei θA)∗)

=
⋂

θ∈[0,2π]

e−i θΓin(ei θA) = E(A).
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Finally, Γ(A) = Γ((A∗)T ) = Γ(A∗) = Γ(A) and E(A) = E((A∗)T ) = E(A) = E(A).

Corollary 4.4. If A ∈ R
n×n, then the curve Γ(A) and the envelope E(A) are sym-

metric with respect to the real axis.

Next we show that the curve Γ(A) and the envelope E(A) are invariant under
unitary similarity.

Proposition 4.5. For every unitary matrix U ∈ C
n×n, Γ(U∗AU) = Γ(A) and

E(U∗AU) = E(A).

Proof. It is enough to prove the first assertion. We observe that the largest eigenvalue
of H(U∗AU) is δ1(U

∗AU) = δ1(A) with U∗y1 as an associated unit eigenvector. Thus,

v(U∗AU) = ‖(U∗S(A)U)(U∗y1)‖2
2 = ‖(U∗(S(A)y1)‖2

2 = v(A)

and

u(U∗AU) = Im((U∗y1)
∗U∗S(A)U(U∗y1)) = Im(y∗1UU∗S(A)UU∗y1) = u(A).

Since the second largest eigenvalue of H(U∗AU) is δ2(U
∗AU) = δ2(A), the proof

follows readily from the definition of Γ(U∗AU).

Proposition 4.6. For any b ∈ C, Γ(A+ bIn) = Γ(A)+ b and E(A+ bIn) = E(A)+ b.

Proof. Let b = sb + i tb (sb, tb ∈ R) and B = A + bIn. The hermitian and skew-
hermitian parts of B are H(B) = H(A) + sbIn and S(B) = S(A) + i tbIn. It follows
that δ1(B) = δ1(A) + sb, δ2(B) = δ2(A) + sb, u(B) = u(A) + tb and v(B) = v(A) +
2 tbu(A) + t2b . As a consequence,

v(B) − u(B)2 = v(A) + 2 tbu(A) + t2b − (u(A)2 + 2 tbu(A) + t2b)

= v(A) − u(A)2

and

Γ(B) = {s + i t : s, t ∈ R with s − sb + i (t − tb) ∈ Γ(A)} = Γ(A) + {b}.

Moreover,

E(B) =
⋂

θ∈[0,2π]

e−i θΓin(ei θB) =
⋂

θ∈[0,2π]

e−i θΓin(ei θ(A + bIn))

=
⋂

θ∈[0,2π]

e−i θ(Γin(ei θA) + ei θb) = b +
⋂

θ∈[0,2π]

e−i θΓin(ei θA),

and the proof is complete.

Proposition 4.7. For every real r > 0 and a ∈ C, Γ(rA) = r Γ(A) and E(aA) =
a E(A).
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Proof. Let r be a positive real number. Then δ1(rA) = rδ1(A), δ2(rA) = rδ2(A),
u(rA) = r2u(A) and v(rA) = r2v(A). Consequently, v(rA)−u(rA) = r2(v(A)−u(A)),
and

Γ(rA) =

{

s + i t : s, t ∈ R with
s

r
+ i

t

r
∈ Γ(A)

}

= r Γ(A).

For the envelope of A, we have

E(rA) =
⋂

θ∈[0,2π]

e−i θΓin(ei θrA) =
⋂

θ∈[0,2π]

e−i θr Γin(ei θA) = r E(A).

One can also see that for each φ ∈ [0, 2π],

E(ei φA) =
⋂

θ∈[0,2π]

e−i θΓin(ei (θ+φ)A)

=
⋂

θ+ φ∈[0,2π]

ei φ
(

e−i (θ+φ)Γin(ei (θ+φ)A)
)

= ei φ
⋂

θ∈[0,2π]

Γin(ei θA) = ei φ E(A),

and the proof is complete.

Figure 4: The envelopes of a Frank matrix (left) and its rotation-translation (right).

Example 4.8. Consider the 11 × 11 real Frank matrix A (that can be generated by
the Matlab command frank(11)). The envelope E(A) is illustrated in the left part
of Figure 4. Clearly, E(A) is symmetric with respect to the real axis, in accordance to
Corollary 4.4. In the right part of the figure, is the envelope E(i A + (10− i 20)I11) =
i E(A) + 10 − i 20, verifying Propositions 4.6 and 4.7.
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5 Comparison of E(A) and F (A)

We will conclude with some observations regarding E(A) as compared to F (A) in
localizing the spectrum of A. Referring to the notation used in the previous sections,
in computing the bounding curve Γ(ei θA), θ ∈ [0, 2π], the additional computational
effort required is for δ2(A) and the quantities v(A) and u(A) which depend on y1.
However, as is evident in Examples 4.2 and 4.8, the envelope E(A) can represent a
dramatic improvement over F (A) in localizing the eigenvalues of A. In what follows,
we will quantify when such an improvement should be expected and when not. As
we will see, the geometry of the eigenvalues is the deciding factor.

Recall that an eigenvalue λ0 of A is called normal if its algebraic and geometric
multiplicities are equal and every eigenvector of A corresponding to λ0 is orthogonal
to every eigenvector of A corresponding to each eigenvalue different from λ0. By
[3, Theorem 1.6.6], every eigenvalue of A that lies on the boundary of F (A) is a
normal eigenvalue of A. Moreover, the non-differentiable points (corners) of ∂F (A)
are necessarily eigenvalues of A [3, Theorem 1.6.3].

If δ1(A) + i u(A) is an eigenvalue of A, then it is clear that δ1(A) + i u(A) is
a normal eigenvalue of A that lies on ∂F (A), and i u(A) is an eigenvalue of S(A).
Furthermore, the eigenvalues δ1(A) + i u(A), δ1(A) and i u(A) of A, H(A) and S(A),
respectively, have the same eigenspaces. If, in addition, δ1(A) is a simple eigenvalue
of H(A), then v(A) − u(A)2 = 0, and the cubic curve Γ(A) reduces to the union of
the point δ1(A) + i u(A) and the vertical line {z ∈ C : Re z = δ2(A)}. Otherwise, i.e.,
when δ1(A) + i u(A) is a normal eigenvalue of A on ∂F (A) and δ1(A) is a multiple
eigenvalue of H(A), then (as already has been mentioned) Γ(A) reduces to the vertical
line {z ∈ C : Re z = δ1(A)}, and Γin(A) coincides with the half-plane Hin(A). As a
consequence, we have the following result.

Proposition 5.1. Let λ0 be a simple eigenvalue of A on the boundary of the numerical

range F (A). If λ0 does not lie on a flat portion of ∂F (A), or it is a non-differentiable

point of ∂F (A), then λ0 is an isolated point of the envelope E(A).

Proof. Suppose that λ0 does not lie on a flat portion of ∂F (A), or it is a non-
differentiable point of ∂F (A). Then, by Properties (P2) and (P6), there is a θ0 ∈ [0, 2π]
such that ei θ0λ0 is the unique right most point of the numerical range F (ei θ0A) =
ei θ0F (A) (see also [2]). Note that ei θ0λ0 is a simple normal eigenvalue of ei θ0A.
Hence, δ1(e

i θ0A) is a simple eigenvalue of the hermitian matrix H(ei θ0A), and the
proposition follows from the above discussion.

Suppose now that an eigenvalue λ0 ∈ σ(A) is close to being normal and also
λ0 lies relatively far from the other eigenvalues of A ∈ C

n×n. As a consequence of
continuity and Proposition 5.1, the envelope may have a connected component G0

such that G0 ∩ σ(A) = {λ0}. We can construct examples (see below) where E(A) has
n connected components. Eluding us at this stage are upper or lower bounds for the
number of connected components of E(A), and for the number of eigenvalues in each
component. Moreover, the proximity of E(A) to the spectrum σ(A) is related to the

11



distance of A from the set of n×n normal matrices, as it is illustrated in the following
example.

Figure 5: Envelopes of three isospectral matrices with varying distances to normality.

Example 5.2. The 5 × 5 triangular complex matrices

A =













5 1 −1 −i i
0 −6 1 −1 −i 2
0 0 −i 4 i −i
0 0 0 0 −i
0 0 0 0 i 5













, B =













5 1 −3 −i i
0 −6 1 −1 −i 4
0 0 −i 4 i −i
0 0 0 0 −i
0 0 0 0 i 5













and C =













5 1 −4 −i i
0 −6 2 −5 −i 4
0 0 −i 4 −3 i 4
0 0 0 0 −i 4
0 0 0 0 i 5












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have the same spectrum. Let D be the 5 × 5 diagonal matrix with diagonal the
common diagonal of A, B and C, and let ‖ · ‖F denote the Frobenius norm. We have

‖A − D‖F

‖A‖F

= 0.3362,
‖B − D‖F

‖B‖F

= 0.4944 and
‖C − D‖F

‖C‖F

= 0.7122,

which can be viewed as (relative) distances of A, B and C to normality, respectively.
The envelopes E(A), E(B) and E(C) are depicted in order in Figure 5. Notice that the
smaller the distance from normality, the more connected components the envelope has.
In the case of A, the envelope consists of five connected components surrounding its
eigenvalues, and E(A) represents a significant improvement over F (A) (recall that the
numerical range appears in the plots of the envelope as the outer outlined region). In
the case of C, E(C) is barely smaller than F (A), while E(B) represents an intermediate
situation.
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