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Abstract

In this paper, a new condition for the controllability of higher order
linear dynamical systems is obtained. The suggested test contains rank
conditions of suitably defined matrices and is based on the notion of com-
pound matrices and the Binet-Cauchy formula.
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1 Introduction and preliminaries

Consider the higher order linear system

Alq
(l)(t) + Al−1q

(l−1)(t) + · · ·+ A1q
(1)(t) + A0q(t) = Bu(t), (1)

where Aj ∈ Cn×n (j = 0, 1, . . . , l), t is the independent time variable, q(t) ∈ Cn

is the unknown vector function, u(t) ∈ Cm is the piecewise continuous input
(control) vector and B ∈ Cn×m is the input matrix. (The indices on q(t) denote
derivatives with respect to t.) Applying the Laplace transformation to (1) yields
the matrix polynomial

L(λ) = Alλ
l + Al−1λ

l−1 + · · ·+ A1λ + A0, (2)

where λ is a complex variable. As a consequence, the spectral analysis of L(λ)
leads to solutions of (1). The suggested references on matrix polynomials and
their applications to differential equations are [1, 2].

A scalar λ0 ∈ C is said to be an eigenvalue of L(λ) in (2) if the system
L(λ0)y = 0 has a nonzero solution y0 ∈ Cn. This solution y0 is known as an
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eigenvector of L(λ) corresponding to λ0, and the set of all eigenvalues of L(λ)
is the spectrum of L(λ), namely, σ(L) = {λ ∈ C : detL(λ) = 0}. At this point
and for the remainder of this paper, we shall assume that the matrix polynomial
L(λ) in (2) has a nonsingular leading coefficient Al, and thus, L(λ) has exactly
nl eigenvalues, counting multiplicities.

The dynamical system (1) is equivalent to the first order system

x(1)(t) = CLx(t) + B̃u(t), (3)

where

CL =




0 I 0 · · · 0
0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I
−A−1

l A0 −A−1
l A1 −A−1

l A2 · · · −A−1
l Al−1



∈ Cnl×nl, (4)

B̃ =




0
...
0

A−1
l B


 ∈ C

nl×m and x(t) =




q(t)
q(1)(t)

...
q(l−1)(t)


 ∈ C

nl. (5)

The nl × nl matrix CL in (4) is known as the (block) companion matrix of
L(λ) and its spectrum coincides with σ(L), and the vector x(t) in (5) is called
the state vector of the system (3) [1, 2, 3]. As a consequence, for a given initial
condition x0 = x(0), the general solution of (1) is given by [1, Theorem 1.5]

q(t) = Zr etCLx0 + Zr

∫ t

0

e(t−s)CLZcB u(s) ds,

where Zr = [ I 0 · · · 0 ] ∈ Cn×nl and Zc =




0
...
0

A−1
l


 ∈ Cnl×n.

The notion of the controllability of dynamical systems has attracted atten-
tion for some years. It refers to the ability of a system to transfer the state
vector from one specified vector value to another in finite time. In particular,
the systems (1) and (3) are called controllable if for every x0, ω ∈ Cnl, there
exist an input vector u(t) and a real t0 > 0 such that x(0) = x0 and x(t0) = ω.

In this article, we obtain an alternative test for the controllability of higher
order linear dynamical systems. The important feature of the new rank condi-
tion (Theorem 2) is that it is independent of λ and requires no computation
of the eigenvalues of L(λ) (see statements (ii) and (iii) in Theorem 1) or the
inverse of the leading coefficient Al (see statement (v) in Theorem 1). It is
assumed that the reader is familiar with the notion of compound matrices and
the Binet-Cauchy formula. The suggested reference is [4].
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2 The new test

One of the major concerns for a control engineer is to maintain the stability of
certain systems. For this reason, in many cases, the behavior of the dynamical
system (1) is modified by applying state feedback (i.e., input vector) of the form

u(t) = v(t)− Fl−1q
(l−1)(t)− · · · − F1q

(1)(t)− F0q(t),

where Fj ∈ Cm×n (j = 1, 2, . . . , l − 1) [3, 5, 6, 7]. The new closed loop system

Alq
(l)(t) + (Al−1 + BFl−1)q(l−1)(t) + · · ·+ (A0 + BF0)q(t) = Bv(t) (6)

is associated with the matrix polynomial

LF (λ) = L(λ) + BF (λ), (7)

where F (λ) = Fl−1λ
l−1 + · · ·+ F1λ + F0.

Classical results on the controllability of first order dynamical systems (see
for example [2, 8, 9] and the references therein) have been generalized to the
higher order systems (1) and (6) in a natural way.

Theorem 1 ([3, Theorem 2.5 and Proposition 2.1], [7, Theorem V.2])

The following statements are equivalent:

(i) The system (1) is controllable.

(ii) KerB∗ ∩KerL(λ)∗ = {0} for all λ ∈ σ(L).

(iii) rank[ L(λ) B ] = n for all λ ∈ σ(L).

(iv) The system (6) is controllable.

(v) rank[ B̃ CLB̃ · · · Cnl−1
L B̃ ] = nl.

Observe now that the matrix polynomial LF (λ) in (7) is written

LF (λ) =
[
L(λ) Bλl−1 · · · Bλ B

]




I
Fl−1

...
F1

F0




.

By taking the n-th compound matrix Cn(·) of both sides in the above equation,
and using the Binet-Cauchy formula for compound matrices [4], it follows

detLF (λ) = Cn(LF (λ))

= Cn

([
L(λ) Bλl−1 · · · Bλ B

]) Cn







I
Fl−1

...
F1

F0







. (8)
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Moreover, it is clear that

Cn

([
L(λ) Bλl−1 · · · Bλ B

])
= [ p1(λ) p2(λ) · · · pξ(λ) ] ,

where ξ =
(

n + lm
n

)
, and p1(λ), p2(λ), . . . , pξ(λ) are scalar polynomials of

degree no more than nl. For every j = 1, 2, . . . , ξ,

pj(λ) =
[
1 λ λ2 · · · λnl

]
rj ,

where rj ∈ Cnl+1 is the vector of the (corresponding) coefficients of pj(λ).
Hence, for the (nl + 1)× ξ complex matrix

P (L(λ), B) = [ r1 r2 · · · rξ ] , (9)

which is known as the Plücker matrix of the system (1) [10, 11], it follows

Cn

([
L(λ) Bλl−1 · · · Bλ B

])
=

[
1 λ λ2 · · · λnl

]
P (L(λ), B). (10)

Theorem 2 The higher order dynamical system (1) is controllable if and only
if the Plücker matrix P (L(λ), B) in (9) has full (row) rank, i.e.,

rankP (L(λ), B) = nl + 1.

Proof Suppose that the system (1) is controllable. Then by applying [9, Theo-
rem 2.1] to the first order system (3), we have that the system (1) is controllable
if and only if the spectrum of the closed loop system (6) can be assigned ar-
bitrarily by suitable choice of F0, F1, . . . , Fl−1. Hence, for every monic scalar
polynomial d(λ) of degree nl, there exist m×n matrices F0, F1, . . . , Fl−1 such
that the matrix polynomial LF (λ) in (7) satisfies (recall that detAl 6= 0)

detLF (λ) = detAl d(λ).

Hence, equation (8) yields

Cn

([
L(λ) Bλl−1 · · · Bλ B

]) Cn







I
Fl−1

...
F1

F0







= detAl

[
1 λ · · · λnl

]
zd,

where zd is the vector of the (corresponding) coefficients of d(λ). Denoting

gF = Cn







I
Fl−1

...
F1

F0







,
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by the above discussion, it follows that
[
1 λ λ2 · · · λnl

]
P (L(λ), B) gF = detAl

[
1 λ λ2 · · · λnl

]
zd

for every λ ∈ C, which implies that

P (L(λ), B) gF = detAl zd. (11)

This system has nl + 1 equations and ξ =
(

n + lm
n

)
unknowns, and since

n,m, l ≥ 1, one can see that ξ ≥ nl + 1. As a consequence, (11) has solutions
for every vector zd ∈ Cnl+1 (with its first coordinate equal to 1) if and only if
the Plücker matrix P (L(λ), B) has full (row) rank.

Conversely, assume that rankP (L(λ), B) = nl + 1 and that the dynamical
system (1) is not controllable. Then by Theorem 1, there is a λ0 ∈ C such that
rank[ L(λ0) B ] < n. Moreover,

rank
[
L(λ0) Bλl−1

0 · · · Bλ0 B
]

< n,

which means that all the n×n minors of the matrix
[
L(λ0) Bλl−1

0 · · · Bλ0 B
]

are zero. Hence,

Cn

([
L(λ0) Bλl−1

0 · · · Bλ0 B
])

= 0

and by (10), [
1 λ0 λ2

0 · · · λnl
0

]
P (L(λ), B) = 0.

Since ξ ≥ nl + 1 and
[
1 λ0 λ2

0 · · · λnl
0

] 6= 0, it is clear that

rankP (L(λ), B) < nl + 1,

that is a contradiction. Thus, the system (1) is controllable. ¤

Notice that the above method involves no computation of the spectrum σ(L)
or the matrix A−1

l . Our result is illustrated in the following example.

Example Let L(λ) be the 2× 2 matrix polynomial

L(λ) = Iλ2 + A1λ + A0 =
[

λ2 + 1 λ− 1
λ− 1 λ2 − 1

]
,

and let B1 = [ 0 1 ]T and B2 = [ 1 0 ]T . Consider the second order linear systems

q(2)(t) + A1q
(1)(t) + A0q(t) = B1u(t) (12)

and
q(2)(t) + A1q

(1)(t) + A0q(t) = B2u(t), (13)

where u(t) is the 1× 1 input vector. For every λ ∈ C,

rank[ L(λ) B1 ] = rank
[

λ2 + 1 λ− 1 0
λ− 1 λ2 − 1 1

]
= 2.
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On the other hand, for λ0 = 1,

rank[ L(λ0) B2 ] = rank
[

2 0 1
0 0 0

]
= 1 < 2.

Thus, by Theorem 1, the system (12) is controllable but the system (13) is not.
Furthermore, we can see that

C2([ L(λ) B1λ B1 ]) = C2

([
λ2 + 1 λ− 1 0 0
λ− 1 λ2 − 1 λ 1

])

= [ λ4 − λ2 + 2λ− 2, λ3 + λ, λ2 + 1, λ2 − λ, λ− 1, 0 ]

and

C2([ L(λ) B2λ B2 ]) = C2

([
λ2 + 1 λ− 1 λ 1
λ− 1 λ2 − 1 0 0

])

= [ λ4 − λ2 + 2λ− 2, −λ2 + λ, −λ + 1, −λ3 + λ, −λ2 + 1, 0 ].

As a consequence,

rankP (L(λ), B1) = rank




−2 0 1 0 −1 0
2 1 0 −1 1 0
−1 0 1 1 0 0
0 1 0 0 0 0
1 0 0 0 0 0




= 5

and

rankP (L(λ), B2) = rank




−2 0 1 0 1 0
2 1 −1 1 0 0
−1 −1 0 0 −1 0
0 0 0 −1 0 0
1 0 0 0 0 0




= 4 < 5,

confirming Theorem 2. ¤
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