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Abstract

In this paper we try to find classes of operators in
AlgL, where L is a completely distributive subspace lat-
tice, which are extreme points. To this direction we an-
alyze a special example and give sufficient conditions,
concerning the initial and final spaces of a partial isom-
etry, so that to be an extreme point of (AlgL)1. We
prove that a partial isometry is extreme if and only if it
is maximal within AlgL.

email: skaran@math.ntua.gr
AMS 1980 Mathematics Subject Classification. Primary 47C05

489



1 Introduction

In what followsH will be a separable Hilbert space and B(H) will
denote the algebra of bounded linear operators on H. Let L be
a completely distributive lattice of subspaces in H and consider
the algebra A = AlgL of operators in B(H) leaving invariant
each subspace in L. Moore and Trent [7] gave necessary and
sufficient conditions for an operator in A to be an extreme point
of the unit ball A1 = {A ∈ A | ‖A‖ ≤ 1}. Since these conditions
refer to all projections in L it is of interest to know classes of
operators in A which are extreme points in A1. For example
isometries or co-isometries in A1 are extreme points. In fact
we see that these operators have a stronger property. They are
strong extreme points of A1 (and any norm-closed subalgebra of
B(H) to which they belong). To this end, we discuss a simple
example and give sufficient conditions for a partial isometry to
be an extreme point in the unit ball of AlgL, in terms of its
initial and final spaces. We prove that a partial isometry is an
extreme point of A1 if and only if it is maximal within A. Finally
we give sufficient conditions for a partial isometry to belong to
a reflexive operator algebra.

By a subspace of H we mean a closed subspace and all the
projections are assumed self adjoint. For a projection E let E⊥ =
I−E. For two vectors e, f ∈ H the operator e⊗ f ∗ is defined by
(e⊗f ∗)x = (x, f)e for x ∈ H. If A ∈ B(H) and if ‖A±B‖ = ‖A‖
for an operator B ∈ B(H) we will say that B is a perturbation of
A. Note that if ‖A±B‖ ≤ ‖A‖ then ‖A±B‖ = ‖A‖. The set of
extreme points in A1 is denoted by extA1. If A ∈ A1 then A ∈
extA1 if and only if there exists a non zero perturbation of A. A
subalgebra A of B(H) is called reflexive if A = AlgLatA, where
LatA denotes the set of all projections P for which AP = PAP
for every A ∈ A. If S is a subset of H, [S] denotes the closed
linear span of S. Throughout this paper when it is convenient
we identify a subspace with the projection on it.
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2 Example

Let {e1, e2} be an orthonormal basis of a two dimensional Hilbert
space H and consider the nest N = {0, P = [e1], I}. The cor-
responding nest algebra A = AlgN consists of the 2 × 2 upper
triangular matrices,

A =

{(
a b
0 c

)
a, b, c ∈ C

}
.

For A ∈ A, given by a matrix as above, it is easy to check by
standard calculations that

‖A‖ = 1 ⇐⇒ |b|2 = (1− |a|2)(1− |c|2)
Moreover, it is not difficult to show that A ∈ A1 if and only if
‖A‖ = 1 and either |a| = |c| = 1 or max{|a|, |c|} < 1. Finally, A
is a partial isometry if and only if abc = 0. Thus by taking a =
c = 0, b = 1 we have a partial isometry (actually a projection)
which is not an extreme point, and by taking for example a =
c = 1/2, b = 3/4 we get an extreme point which is not a partial
isometry.

The following proposition characterizes when a rank one op-
erator is an extreme point.

Proposition 1 A rank one operator e ⊗ f ∗ in a nest algebra
A = AlgN is an extreme point of A1 if and only if the nest N
is of the form {0, P, I}, where dim P = 1 and dim I = 2.

Proof. The proof, aside from the Theorem 7,[7], is easy and is
omitted. (See also remark 2).

In the sequel we find sufficient conditions for a partial isome-
try in AlgA to be extreme. For this we need the following result
which is a restatement of Lemma 2 in [3] and the definition of a
strong extreme point in [2].

Lemma 2 Let A be an algebra of operators in a Hilbert space
and S ∈ A. If either S or S∗ is an isometry then for each W ∈ A,

max{‖S + W‖, ‖S −W‖} ≥
√

1 + ‖W‖2.
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Definition 3 A unit vector x in a Banach space X is said to
be a strong extreme point of the unit ball X1 if and only if,
for every ε > 0 there exist δ > 0 such that ‖y‖ ≤ ε whenever
max{‖x + y‖, ‖x− y‖} ≤ 1 + δ.

Note that every strong extreme point is an extreme point. We
show that in a norm-closed algebra of operators, that contains
the compact operators, the converse is also true.

Proposition 4 Every extreme point in a norm-closed algebra
A of operators that contains the compact operators is a strong
extreme point.

Proof. From Theorem 5 in [7] we know that the extreme points
of the unit ball of A are the isometries and co-isometries in A.
Let U ∈ extA1 and for ε > 0 take δ =

√
1 + ε2 − 1. For an

operator A ∈ A such that max{‖U + A‖, ‖U − A‖} ≤ 1 + δ,
using Lemma 2, we have

1 + ‖A‖2 ≤ max{‖U + A‖2, ‖U − A‖2} ≤ (1 + δ)2 = 1 + ε2.

Therefore ‖A‖ ≤ ε and hence U is a strong extreme point of
A1.

Corollary 5 Let A be as in Proposition 4 and B be a subalgebra
of A. Then

1. Every isometry or co-isometry in B is a strong extreme
point of B1.

2. Every partial isometry V ∈ B with P = V ∗V and Q = V V ∗

is a strong extreme point of the unit ball of the space QBP.

Proof. The operator V = QV P is an isometry on the range of
P.

Proposition 6 Let A = AlgL, where L is a completely distribu-
tive lattice of projections. If V is a partial isometry in A with
initial space P = V ∗V and final space Q = V V ∗ such that either
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1. Q ∈ L and [range(I −Q⊥P⊥)] = H or

2. P⊥ ∈ L and I −Q⊥P⊥ is one to one

then V ∈ extA1.

Proof. Let V be a partial isometry in A such that V = 1
2
(X +Y )

where X, Y ∈ A1. Then V = V P = 1
2
(XP +Y P ). Since V is an

isometry on the range of P, from Corollary 5, V is an extreme
point of (AP )1. Therefore V = XP = Y P and hence

(X − Y )P = 0. (1)

Similarly since V ∗ is an isometry in the range of Q it is an ex-
treme point of (A∗Q)1 and therefore from V ∗ = 1

2
(X∗Q + Y ∗Q)

we have V ∗ = X∗Q = Y ∗Q and hence

Q(X − Y ) = 0. (2)

Combining (1) and (2) we get

X − Y = Q⊥(X − Y )P⊥. (3)

Now if Q ∈ L and the range of (I −Q⊥P⊥) is dense, then from
(3) we have X − Y = Q⊥(X − Y )Q⊥P⊥, therefore (X − Y )(I −
Q⊥P⊥) = 0 and hence X = Y.

Analogously, if P⊥ ∈ L and I−Q⊥P⊥ is one to one then, from
(3), X −Y = Q⊥P⊥(X −Y ), therefore (I −Q⊥P⊥)(X −Y ) = 0
and hence X = Y .

Therefore V ∈ extA1.

Remark 1 Every partial isometry V ∈ AlgL such that V ∗V =
E⊥ and V V ∗ = E for some E ∈ L is an extreme point of (AlgL)1.

Remark 2 Conditions 1 and 2 of Proposition 6 are not neces-
sary for a partial isometry to be in ext(AlgL)1. To see this we
give the following example.
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Example. Let H1, H2 be two Hilbert spaces and N1, N2 be two
nests of subspaces ofH1 andH2 correspondingly. IfH = H1⊕H2

and N = {N ⊕ 0, N ∈ N2} ∪ {H2 ⊕M, M ∈ N1} then the nest
algebra corresponding to N is

AlgN =

{(
A X
0 B

)
, A ∈ AlgN2, B ∈ AlgN1, X ∈ B(H1, H2)

}
.

Let also N ∈ N2, M ∈ N1 and consider the partial isometries
V1 with initial space P⊥

N and final space PN and V2 with initial
space P⊥

M and final space PM . Then V1 ∈ AlgN2, V2 ∈ AlgN1

and the operator

V =

(
V1 0
0 V2

)
∈ AlgN

is a partial isometry with initial space N⊥⊕M⊥ and final space
M ⊕ N. It is ease to prove that V ∈ ext(AlgN )1. Obviously V
satisfies none of the conditions 1 and 2 of Proposition 6.

3 Maximal partial isometries within

AlgL
Halmos in [4] defines a partial order for partial isometries as
follows: If U and V are partial isometries write V < U in case
U agrees with V on the initial space of V. This implies that
(ker V )⊥ ⊆ (ker U)⊥.

Definition 7 Let A be an algebra of operators. We say that a
partial isometry U ∈ A is maximal within A if for any partial
isometry U ∈ A such that V < U implies V = U.

Theorem 8 Let L be a completely distributive lattice and A =
AlgL. A partial isometry V ∈ A1 is an extreme point of A1 if
and only if V is maximal within A.
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Proof. Let V be a partial isometry, maximal within A and V /∈
extA1. Then there exists a projection E ∈ L such that P⊥ ∩
E ⊥ 6= 0 and Q⊥ ∩ E 6= 0 where P = V ∗V and Q = V V ∗.
Consider unit vectors f ∈ P⊥ ∩ E⊥ and e ∈ Q⊥ ∩ E. Then the
rank one operator e⊗ f ∗ belongs to A1, the operator V + e⊗ f ∗

is also in A1, it is a partial isometry and V < V + e⊗ f ∗ which
contradicts the maximality of V within A. Therefore V ∈ extA1.

Conversely. Let V, U be partial isometries in A such that
V ∈ extA1 and V ≤ U. We show that V = U. Put A = U − V.
Then ‖A‖ = 1, ‖V +A‖ = ‖U‖ = 1 and ‖V −A‖ = ‖2V −U‖ =
1. Therefore A is a perturbation of V and since V ∈ extA1 we
have A = 0. Hence U = V and so V is maximal within A.

Remark 3 Partial isometries that satisfy the hypothesis of Propo-
sition 6 are maximal within AlgL.

Remark 4 If N is a nest then a rank one operator is maxi-
mal within AlgN if and only if N = {0, P, I}, dim P = 1 and
dim I = 2. This is an immediate consequence of Proposition 6
and Theorem 8 above. Note that this can also be proved directly
without any difficulty.

Remark 5 In the finite dimensional case every extreme point
is a strong extreme point. Indeed McGuigan in [6] has shown
that if X is a separable conjugate space such that the norm and
the weak star convergence of sequences agree on the surface of
the unit ball, then every extreme point of the unit ball of X is
strong extreme. Now if X is finite dimensional then its conjugate
space X∗ is also finite dimensional and the weak star topology
coincides with the norm topology on X∗ (and this happens if
and only if X is finite dimensional). Since a finite dimensional
space is reflexive the result follows from McGuigan’s Theorem. A
consequence of this is that all the extreme points in the example
of section 2 are strong extreme.

Remark 6 There is a notion of an inner operator, parallel to
that of an inner function, for operators in a special type of nest
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algebras. This notion is given by Areveson in [1]. Let N be a Z
ordered nest of projections where Z = (−∞) ∪ Z ∪ (+∞).This
means that there exists an order lattice isomorphism between
N and a subset of Z. Then an operator U ∈ AlgN is called
inner if U is a partial isometry whose the initial space U∗U
commutes with every Pn ∈ N . Theorem 1 in [2] says that if
f ∈ H∞(U), where U is the open unit disc in C, then f is a
strong extreme point of the unit ball of H∞(U) if and only if f
is an inner function. As a corollary from this Theorem we have
the following Proposition:

Proposition 9 Let N be an N-ordered nest of projections and
A = AlgN . Then a Toeplitz operator Tf ∈ A is a strong extreme
point of A1 if and only if ‖f‖∞ = 1 and f ∈ H∞(U) is inner.

Proof. For each f ∈ L∞ the corresponding Toeplitz operator Tf

is defined by the equation (Tfej, ej+n) = f̂(n) for all j ≥ 0 and
all integers n , where {ej} is an orthogonal basis in the Hilbert

space H and f̂(n) is the nth Fourier coefficient of the function f.
It is well known that Tf ∈ AlgN if and only if f ∈ H∞. Also for
f ∈ L∞, ‖Tf‖ = ‖f‖∞. Let Tf ∈ A1 be a strong extreme point
of A1. If f is not inner then f is not a strong extreme point of
the unit ball of H∞. Therefore there exists ε > 0 and a function
g ∈ H∞(U) such that for any δ > 0,

‖f±g‖ ≤ 1+δ and ‖g‖∞ > ε. Consider the Toeplitz operator
Tg. Then Tg ∈ A,

‖Tf ± Tg‖ = ‖f ± g‖∞ = ‖f ± g‖∞ ≤ 1 + δ

and ‖Tg‖ = ‖g‖∞ > ε, which is a contradiction. Hence f is an
inner function.

Conversely, if f is inner, ‖f‖∞ = 1 then Tf is an isometry
and hence a strong extreme point of (AlgN )1.

The following result is of independent interest and gives suf-
ficient conditions for a partial isometry to belong to a given re-
flexive algebra.
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Proposition 10 Let A be a reflexive algebra of operators and
L = LatA. Suppose V ∈ B(H) is a partial isometry such that
either P = V ∗V commutes with L and ‖EV x‖ ≥ ‖Ex‖ for every
E ∈ L and for every x ∈ PH or Q = V V ∗ commutes with L
and ‖E⊥V ∗x‖ ≥ ‖E⊥x‖ for every E ∈ L and for every x ∈ QH.
Then V ∈ A.

Proof. Suppose that P commutes with L and ‖EV x‖ ≥ ‖Ex‖
for every E ∈ L and for every x ∈ PH. (We work similarly when
Q commutes with L and ‖E⊥V ∗‖ ≥ ‖E⊥x‖ for every x ∈ QH
and E ∈ L ). We have

‖EV Ex‖ = ‖EV PEx‖ = ‖EV EPx‖ ≥ ‖EPx‖ = ‖Ex‖, x ∈ PH, E ∈ L.

Hence

‖E⊥V Ex‖2 = ‖V Ex‖2 − ‖EV Ex‖2 ≤ ‖V Ex‖2 − ‖Ex‖2

≤ ‖V ‖2‖Ex‖2 − ‖Ex‖2 = 0, x ∈ PH, E ∈ L.

Therefore ‖E⊥V Ex‖ = 0 for every x ∈ PH and E ∈ L. Since
EV Ex = 0 for every x ∈ P⊥H and E ∈ L we have ‖E⊥V E‖ = 0
for all E ∈ L. Equivalently E⊥V E = 0 for all E ∈ L and hence
V ∈ A.
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