ON CERTAIN COMMUTING FAMILIES OF RANK ONE OPERATORS

by S. KARANASIOS

(Received 13th July 1983)

1. Introduction

A study of nonselfadjoint algebras of Hilbert space operators was begun by considering special types of such algebras, namely those determined by a commuting family of rank one operators. A first step in this direction was made by Erdos in [1] and is continued more extensively in [2].

Here we examine the algebra of bounded linear operators on l^2 which have a specific set of vectors in l^2 as eigenvectors. We prove that this algebra is a maximal abelian subalgebra of $\mathcal{B}(l^2)$ determined by a commuting family of rank one operators, is topologically isomorphic to the Hilbert space l^2 and characterise those operators in it which have simple eigenvalues. Moreover, we describe the compact operators in the algebra and give a new class of compact operators which, although they have a complete system of eigenvectors, do not allow spectral synthesis.

Examples of maximal abelian reflexive algebras are given in [1] and [2]. In the sequel we give sufficient conditions for a compact operator in the algebra given in Section 6 of [2] to be reflexive and admit spectral synthesis. Finally we prove that none of the reflexive operators in the above mentioned algebras is subnormal or even similar to a subnormal operator and hence these examples are not covered by the results of R. F. Olin and J. E. Thomson in [5].

In this paper, the term *Hilbert space* will mean complex, separable, infinite dimensional Hilbert space, subspace will mean closed linear subspace and operator will mean bounded linear operator. We denote by $\mathcal{B}(H)$ the set of all operators on a Hilbert space H. The inner product is denoted by $\langle \ , \ \rangle$. For any sets \mathcal{A} of operators and \mathcal{L} of subspaces we write Lat \mathcal{A} for the set of subspaces of H which are invariant under every member of \mathcal{A} , and Alg \mathcal{L} for the set of operators on H which leave every member of \mathcal{L} invariant. We denote the commutant of \mathcal{A} by \mathcal{A}' . If x and y are non-zero vectors, the operator $t \to \langle t, x \rangle y$ is denoted by $x \otimes y$. The strongly closed algebra generated by a commuting family \mathcal{R} of rank one operators is denoted by $\mathcal{A}(\mathcal{R})$. An algebra \mathcal{A} is called reflexive if $\mathcal{A} = \text{Alg Lat } \mathcal{A}$. An operator A is called reflexive if the weakly closed algebra generated by A and the identity A is reflexive. If A is a subset of A, the closed linear span of A will be denoted by cls A. The range of an operator A is denoted by ran A.

A sequence $\{x_n\}_1^{\infty}$ of vectors in a Hilbert space H is said to be *complete* if $\operatorname{cls}\{x_n:n\geq 1\}=H$ and is called a *basis* of H if for every $x\in H$ there exists a unique sequence $\{a_n\}_1^{\infty}$ of scalars such that $x=\sum a_nx_n$. The following terminology is taken from

[4] (see also [2]). The sequence $\{x_n\}_1^{\infty}$ is called minimal if $x_n \notin \operatorname{cls} \{x_m : n \neq m\}$ for every $n \ge 1$. A sequence $\{x_n\}_1^{\infty}$ is minimal if and only if there exists a sequence $\{y_n\}_1^{\infty}$ biorthogonal to it; that is, a sequence such that $\langle x_n, y_m \rangle = 1$ for n = m and = 0 for $n \neq m$. If $\{x_n\}_1^{\infty}$ is complete and minimal the bi-orthogonal sequence $\{y_n\}_1^{\infty}$ is unique. The sequence $\{x_n\}_1^{\infty}$ is said to be strongly complete if it is complete and minimal and for every $x \in H$, $x \in \operatorname{cls} \{x_n : \langle x, y_n \rangle \neq 0\}$ where $\{y_n\}_1^{\infty}$ is the sequence bi-orthogonal to $\{x_n\}_1^{\infty}$. Any basis is strongly complete; the converse is false (see [2], Section 6). A vector $x \in H$ is called a root vector of $A \in \mathcal{B}(H)$ corresponding to the eigenvalue λ , if $(A - \lambda I)^n x = 0$ for some n. We shall say that $A \in \mathcal{B}(H)$ allows spectral synthesis if for any invariant subspace M of the operator A is called complete if the system of all its root vectors corresponding to nonzero eigenvalues is complete in H and we shall say that A allows strict spectral synthesis if its restriction to any invariant subspace is a complete operator.

2. The algebra R'

Consider the set of vectors $x_n = (1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, 0, \dots), n \ge 1$, in l^2 . Its unique bi-orthogonal sequence is $\{y_n\}_1^{\infty}$ where

$$y_n = (0, ..., 0, n, -(n+1), 0, ...), n \ge 1.$$

(nth place)

Clearly $\operatorname{cls}\{x_n:n\geq 1\}=l^2$, and so $\{x_n\}_1^\infty$ is complete, and obviously minimal. If $z_0=(1,\frac{1}{2},\frac{1}{3},\ldots)$ then since $\langle z_0,y_n\rangle=0$ for all $n,\ z_0\notin\operatorname{cls}\{y_n:n\geq 1\}$ and hence $\{y_n\}_1^\infty$ is not complete. Also since $z_0\notin\operatorname{cls}\{x_n:\langle z_0,y_n\rangle\neq 0\},\ \{x_n\}_1^\infty$ is not strongly complete.

In the following we examine the bounded linear operators on l^2 having the sequence $\{x_n\}_{1}^{\infty}$ as eigenvectors. The following two results are taken from [2].

Let \mathcal{R} be a commuting family of rank one operators on a separable Hilbert space H. Let

$$X_0 = \operatorname{cls} \{ \operatorname{ran} R : R \in \mathcal{R} \}, \quad Y_0 = \operatorname{cls} \{ \operatorname{ran} R^* : R \in \mathcal{R} \}.$$

Proposition 1. If either $X_0 = H$ or $Y_0 = H$ and \mathcal{R} is closed under multiplication by non-zero scalars then \mathcal{R} is maximal.

Proposition 2. If \mathcal{R} is a maximal commuting family of rank one operators then any one of the conditions $X_0 = H$, $Y_0 = H$, $X_0 \cap Y_0 = (0)$ implies that \mathcal{R}' is abelian.

Let

$$\mathcal{R} = \{ \lambda(y_n \otimes x_n), n \ge 1, \lambda \in \mathbb{C} \setminus \{0\} \}$$
 (1)

where $\{x_n\}_1^{\infty}$, $\{y_n\}_1^{\infty}$ are as defined above. The properties of the sequences $\{x_n\}_1^{\infty}$ and $\{y_n\}_1^{\infty}$ ensure that \mathcal{R} is a commuting family and Proposition 1 shows it to be maximal. If \mathcal{R}' is the commutant of \mathcal{R} then, since $X_0 = \operatorname{cls}\{x_n : n \ge 1\} = l^2$ and \mathcal{R}' is maximal

abelian if and only if it is abelian, we have by Proposition 2 that \mathcal{R}' is a maximal abelian subalgebra of $\mathcal{B}(l^2)$.

Let $T \in \mathcal{R}'$. Then each vector x_n is an eigenvector of T. The converse is also true. Indeed, suppose that there exists a sequence $\{\lambda_n\}_1^{\infty}$ of scalars such that $Tx_n = \lambda_n x_n$ where T is a bounded operator on l^2 . Then

$$\langle T^* y_m - \overline{\lambda}_m y_m, x_n \rangle = \langle y_m, \lambda_n x_n \rangle - \overline{\lambda}_m \langle y_m, x_n \rangle$$

$$= (\overline{\lambda}_n - \overline{\lambda}_m) \langle y_m, x_n \rangle$$

$$= 0$$

for every m, n and since cls $\{x_n: n \ge 1\} = l^2$ we have $T^*y_m = \overline{\lambda}_m y_m$. Hence

$$T(y_m \otimes x_m) = y_m \otimes Tx_m = \lambda_m(y_m \otimes x_m)$$

and

$$(y_m \otimes x_m) T = T^* y_m \otimes x_m = \lambda_m (y_m \otimes x_m)$$

for all m. That is, T commutes with all members of \mathcal{R} and so $T \in \mathcal{R}'$.

Let $\{\phi_n\}_1^{\infty}$ be the standard orthonormal basis for l^2 and for $T \in \mathcal{R}'$ consider the matrix representation of T with respect to the basis $\{\phi_n\}_1^{\infty}$. We can easily see, since each x_n is an eigenvector of T, that this matrix is of the form

$$\begin{bmatrix} a_1 & a_2 & a_3 & a_4 & a_5 & \dots \\ 0 & s_2 & \frac{1}{2}a_3 & \frac{1}{2}a_4 & \frac{1}{2}a_5 & \dots \\ 0 & 0 & s_3 & \frac{1}{3}a_4 & \frac{1}{3}a_5 & \dots \\ 0 & 0 & 0 & s_4 & \frac{1}{4}a_5 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \dots \end{bmatrix}$$

where $\{a_n\}_1^{\infty}$ is a sequence of complex numbers and

$$s_n = \sum_{k=1}^n \frac{1}{k} a_k.$$

The following result shows for which sequences $\{a_n\}_{1}^{\infty}$ of complex numbers the corresponding operators on l^2 are bounded.

Proposition 3. Let $\{a_n\}_1^{\infty}$ be a sequence of complex numbers and let $s_n = \sum_{k=1}^n (1/k)a_k$.

$$\eta_n = s_n \xi_n + \frac{1}{n} \sum_{m=n+1}^{\infty} a_m \xi_m$$

then the map $T:l^2 \rightarrow l^2$ such that

$$(\xi_1, \xi_2, \xi_3, \ldots, \xi_n, \ldots) \rightarrow (\eta_1, \eta_2, \eta_3, \ldots, \eta_n, \ldots)$$

defines a bounded linear operator on l^2 if and only if $a = \{a_n\}_1^{\infty}$ belongs to l^2 .

Proof. Suppose that T defined as above is a bounded operator. Then, since

$$\langle T^*\phi_1, \phi_n \rangle = \langle \phi_1, T\phi_n \rangle$$

= \bar{a}_n

and

$$\sum_{n=1}^{\infty} |\bar{a}_n|^2 = \sum_{n=1}^{\infty} |\langle T^* \phi_1, \phi_n \rangle|^2$$
$$= ||T^* \phi_1||^2 < \infty$$

we have that $\{\bar{a}_n\}_1^{\infty} \in l^2$ and hence $a \in l^2$.

Conversely, let $a = \{a_n\}_1^{\infty} \in l^2$ and let D be the diagonal operator defined by $D\phi_n = s_n \phi_n$, $n \ge 1$. Then

$$|s_{n}| = \left| \sum_{k=1}^{n} \frac{1}{k} a_{k} \right|$$

$$\leq \left(\sum_{k=1}^{n} \frac{1}{k^{2}} \right)^{1/2} \left(\sum_{k=1}^{n} |a_{k}|^{2} \right)^{1/2}$$

$$\leq \frac{\pi \sqrt{6}}{6} ||a||. \tag{2}$$

Hence $\{s_n\}_1^{\infty}$ is a bounded sequence and consequently D is a bounded operator. So it is enough to show that A = T - D is bounded. But A maps $x = (\xi_1, \xi_2, \xi_3, ..., \xi_n, ...)$ into $\{\eta_1, \eta_2, \eta_3, ..., \eta_n, ...\}$ where

$$\eta_n = \frac{1}{n} \sum_{m=n+1}^{\infty} a_m \xi_m.$$

Therefore

$$||Ax||^{2} = \sum_{n=1}^{\infty} \frac{1}{n^{2}} \left| \sum_{m=n+1}^{\infty} a_{m} \xi_{m} \right|^{2}$$

$$\leq \sum_{n=1}^{\infty} \frac{1}{n^{2}} \left(\sum_{m=n+1}^{\infty} |a_{m}|^{2} \right) \left(\sum_{m=n+1}^{\infty} |\xi_{m}|^{2} \right)$$

$$\leq ||a||^2 ||x||^2 \sum_{n=1}^{\infty} \frac{1}{n^2}$$
$$= \frac{\pi^2}{6} ||a||^2 ||x||^2$$

and so $||A|| \le (\pi \sqrt{6/6}) ||a||$. Hence T is bounded and using (2) we get

$$||T|| \le ||D|| + ||S||$$

$$\le \sup_{n} |s_{n}| + \frac{\pi\sqrt{6}}{6} ||a||$$

$$\le \frac{\pi\sqrt{6}}{6} ||a|| + \frac{\pi\sqrt{6}}{6} ||a||$$

$$= \frac{\pi\sqrt{6}}{3} ||a||.$$
(3)

Corollary 4. The algebra \mathcal{R}' and the Hilbert space l^2 are topologically isomorphic (where \mathcal{R}' is considered with the norm topology).

Proof. Proposition 3 shows that there exists a linear one-to-one map ψ from l^2 onto \mathcal{R}' . So we have to show that both ψ and ψ^{-1} are bounded. If T corresponds to $a \in l^2$ and $\bar{a} = \{\bar{a}_n\}_1^{\infty}$, then

$$||T\bar{a}||^{2} = \sum_{n=1}^{\infty} \left| s_{n}\bar{a}_{n} + \frac{1}{n} \sum_{m=n+1}^{\infty} a_{m}\bar{a}_{m} \right|^{2}$$

$$\geq \left| s_{1}\bar{a}_{1} + \sum_{m=2}^{\infty} |a_{m}|^{2} \right|^{2}$$

$$= ||a||^{4}$$

and hence

$$||T|| = \sup \{||Tx||, x \in l^2, ||x|| = 1\}$$

$$\geq \frac{||T\bar{a}||}{||a||}$$

$$\geq ||a||.$$

Comparing (3) and (4) we have

$$||a|| \leq ||T|| \leq \frac{\pi\sqrt{6}}{3}||a||$$

which implies the continuity of ψ and ψ^{-1} .

Remark. Let \mathcal{R} be a commuting family of rank one operators and let $\mathcal{A}(\mathcal{R})$ be the strongly closed algebra generated by \mathcal{R} . It is proved in [2] that:

- (i) $I \in \mathcal{A}(\mathcal{R})$ implies $\operatorname{cls} \{ \operatorname{ran} R : R \in \mathcal{R} \} = \operatorname{cls} \{ \operatorname{ran} R^* : R \in \mathcal{R} \} = H$ where I is the identity operator.
 - (ii) $\mathscr{A}(\mathscr{R})$ is maximal abelian if and only if $I \in \mathscr{A}(\mathscr{R})$.

Now if \mathcal{R} is as in (1), then the corresponding strongly closed algebra $\mathcal{A}(\mathcal{R})$ is not maximal, since otherwise $I \in \mathcal{A}(\mathcal{R})$ and we must have $\operatorname{cls}\{y_n: n \ge 1\} = l^2$ which is not true. Hence $\mathcal{A}(\mathcal{R})$ is a proper subset of \mathcal{R}' .

Next we describe the compact operators of \mathcal{R}' .

Proposition 5. Let T be the operator on l^2 determined by the sequence $\{a_n\}_{1}^{\infty}$ as in Proposition 3. Then T is compact if and only if $s_n \to 0$ as $n \to \infty$.

Proof. Suppose T is compact. Then, since each s_n is an eigenvalue of T, we have $s_n \to 0$ as $n \to \infty$.

Conversely, if D is the diagonal operator defined by $D\phi_n = s_n\phi_n$, where $\{\phi_n\}_1^{\infty}$ is the usual basis for l^2 , then $s_n \to 0$ as $n \to \infty$ implies that D is compact. Let A = T - D. It is sufficient to show that A is compact. Define A_N , $N \ge 2$ by $A_N x = y$ where, if $x = \{\xi_n\}_1^{\infty}$ and $y = \{\eta_n\}_1^{\infty}$,

$$\eta_n = \begin{cases} \frac{1}{n} \sum_{m=n+1}^{N} a_m \xi_m & n \leq N-1 \\ 0 & n \geq N \end{cases}$$

For every N, A_N is finite rank operator and $(A-A_N)x=y$ where $\eta_n=(1/n)\sum_{m=n+1}^\infty b_m\xi_m$ and

$$b_m = \begin{cases} 0 & m \leq N \\ a_m & m \geq N+1. \end{cases}$$

If $b = \{b_n\}_1^{\infty}$ then by (3) in the proof of Proposition 3

$$||A-A_N|| \leq \frac{\pi\sqrt{6}}{3}||b||$$

$$= \frac{\pi\sqrt{6}}{3} \left(\sum_{m=N+1}^{\infty} |a_m|^2 \right)^{1/2}.$$

Now $a \in l^2$ implies $\sum_{m=N+1}^{\infty} |a_m|^2 \to 0$ as $N \to \infty$ and therefore $A_N \to A$ in norm as $N \to \infty$. Hence A is a norm limit of finite rank operators and therefore it is compact.

We can easily find a compact operator in \mathcal{R}' . Let $a_1 = 1$ and $a_n = -1/(n-1)$, $n \ge 2$. Then $s_n = 1/n$ and hence $s_n \to 0$ as $n \to \infty$. So by Proposition 5 the operator T corresponding to the sequence $\{a_n\}_1^{\infty}$ is compact.

Corollary 6. Let T be the operator on l^2 determined by the sequence $\{a_n\}_{1}^{\infty}$ as in Proposition 3. Then T is compact if and only if the vector $a = \{a_n\}_{1}^{\infty}$ is orthogonal to the vector $z_0 = (1, \frac{1}{2}, \frac{1}{3}, \dots)$.

Proof. Obviously $s_n \to 0$ as $n \to \infty$ if and only if $\sum_{k=1}^{\infty} (1/k) a_k = 0$ which is equivalent to the fact that a is orthogonal to z_0 .

Remark. A simple calculation shows that for any $T \in \mathcal{R}'$ the vector z_0 is an eigenvector of T with corresponding eigenvalue $\sum_{k=1}^{\infty} (1/k) a_k$, where $\{a_n\}_1^{\infty}$ is the sequence determining the operator T.

Let

$$z_{n} = z_{0} - x_{n}$$

$$= \left(0, 0, \dots, \frac{1}{n+1}, \frac{1}{n+2}, \dots\right)$$

$$\uparrow$$

$$(n+1)\text{th place}$$

We have the following:

Proposition 7. Let T be an operator on l^2 determined by the sequence $a = \{a_n\}_{1}^{\infty}$. Then $z_n = z_0 - x_n$ is an eigenvector of T if and only if a is orthogonal to z_n . When z_n is an eigenvector of T the corresponding eigenvalue is $s_n = \sum_{k=1}^{n} (1/k) a_k$.

Proof. Since $x_n = z_0 - z_n$, $Tz_0 = (\sum_{k=1}^{\infty} (1/k) a_k) z_0$ and $Tx_n = s_n x_n$ we have

$$Tz_{n} = Tz_{0} - Tx_{n}$$

$$= \left(\sum_{k=1}^{\infty} \frac{1}{k} a_{k}\right) z_{0} - \left(\sum_{k=1}^{n} \frac{1}{k} a_{k}\right) x_{n}$$

$$= \left(\sum_{k=1}^{n} \frac{1}{k} a_{k}\right) z_{n} + \left(\sum_{k=n+1}^{\infty} \frac{1}{k} a_{k}\right) z_{0}$$

$$= s_{n} z_{n} + \left(\sum_{k=n+1}^{\infty} \frac{1}{k} a_{k}\right) z_{0}.$$
(5)

The last equality shows that $Tz_n = s_n z_n$ if and only if $(\sum_{k=n+1}^{\infty} (1/k) a_k) z_0 = \{0\}$; equivalently $\sum_{k=n+1}^{\infty} (1/k) a_k = 0$. This is also equivalent to a being orthogonal to z_n , and the proof is complete.

Proposition 8. Let T be an operator on l^2 determined by the sequence $a = \{a_n\}_1^{\infty}$. If $s_m \neq s_n$ for $m \neq n$ and the vector $a = \{a_n\}_1^{\infty}$ is not orthogonal to any of the vectors z_n , $n \geq 1$ then T has simple eigenvalues.

Proof. It is enough to prove that the only eigenvectors of T are the non-zero scalar multiples of the vectors x_n , $n \ge 1$ and z_0 . Suppose $Tx = \lambda x$ with $x = (\xi_1, \xi_2, \xi_3, ...)$, $x \notin \text{cls } \{z_0\}$ and let r be the smallest positive integer such that $r\xi_r \ne (r+1)\xi_{r+1}$. Then

$$\lambda \xi_r = s_r \xi_r + \frac{1}{r} \sum_{m=r+1}^{\infty} a_m \xi_m.$$

Equivalently

$$\lambda r \xi_r = r s_r \xi_r + \sum_{m=r+1}^{\infty} a_m \xi_m. \tag{6}$$

Also

$$\lambda \xi_{r+1} = s_{r+1} \xi_{r+1} + \frac{1}{r+1} \sum_{m=r+2}^{\infty} a_m \xi_m$$

$$= s_r \xi_{r+1} + \frac{1}{r+1} \sum_{m=r+1}^{\infty} a_m \xi_m.$$

Equivalently

$$\lambda(r+1)\xi_{r+1} = (r+1)s_r\xi_{r+1} + \sum_{m=r+1}^{\infty} a_m\xi_m. \tag{7}$$

Subtracting (7) from (6) we get

$$\lambda(r\xi_r - (r+1)\xi_{r+1}) = s_r(r\xi_r - (r+1)\xi_{r+1})$$

which implies $\lambda = s_r$. Also

$$\lambda \xi_{r+2} = s_{r+2} \xi_{r+2} + \frac{1}{r+2} \sum_{m=r+3}^{\infty} a_m \xi_m$$

$$= s_{r+1}\xi_{r+2} + \frac{1}{r+2} \sum_{m=r+2}^{\infty} a_m \xi_m.$$

Equivalently

$$\lambda(r+2)\xi_{r+2} = (r+2)s_{r+1}\xi_{r+2} + \sum_{m=r+2}^{\infty} a_m \xi_m.$$
 (8)

Subtracting (8) from (7) we have

$$\lambda[(r+1)\xi_{r+1}-(r+2)\xi_{r+2}]=s_r(r+1)\xi_{r+1}+a_{r+1}\xi_{r+1}-(r+2)s_{r+1}\xi_{r+2}$$

that is

$$\lambda[(r+1)\xi_{r+1}-(r+2)\xi_{r+2}]=s_{r+1}[(r+1)\xi_{r+1}-(r+2)\xi_{r+2}].$$

But $\lambda = s_r$ and by hypothesis $s_r \neq s_{r+1}$. Therefore $(r+1)\xi_{r+1} = (r+2)\xi_{r+2}$. Using the fact that $s_r \neq s_{r+k}$, $k \ge 1$ by induction we get

$$\xi_{r+k} = \frac{r+1}{r+k} \xi_{r+1}, \quad k \ge 1. \tag{9}$$

Now from (7) and $\lambda = s_r$ we have $\sum_{m=r+1}^{\infty} a_m \xi_m = 0$ and from this, using (9)

$$\sum_{m=r+1}^{\infty} a_m \frac{r+1}{m} \xi_{r+1} = 0$$

and so $\xi_{r+1}(\sum_{m=r+1}^{\infty}(1/m)a_m)=0$. Since by hypothesis $\sum_{m=r+1}^{\infty}(1/m)a_m\neq 0$ we have $\xi_{r+1}=0$ and consequently $\xi_{r+k}=0$ for all $k\geq 1$. Therefore x is a scalar multiple of $x_r=(1,\frac{1}{2},\frac{1}{3},\ldots,(1/r),0,\ldots)$.

Remark. The condition $s_n \neq s_m$ for $m \neq n$ implies that the vector $a = \{a_n\}_1^{\infty}$ could be orthogonal to at most one of the vectors z_n , $n \geq 1$, for if a is orthogonal to z_n and z_m with n > m, say, then

$$0 = \sum_{k=m+1}^{\infty} \frac{1}{k} a_k$$

$$= \sum_{k=m+1}^{n} \frac{1}{k} a_k + \sum_{k=n+1}^{\infty} \frac{1}{k} a_k$$

$$= \sum_{k=m+1}^{n} \frac{1}{k} a_k$$

$$= s_n - s_m$$

which implies $s_n = s_m$.

We have the following:

Corollary 9. Let T be an operator on l^2 determined by the sequence $\{a_n\}_1^{\infty}$. If $s_n \neq s_m$ for $m \neq n$ then the only eigenvectors of T are the non-zero scalar multiples of the vectors $z_0, x_n, n \geq 1$ and possibly one of the vectors $z_n, n \geq 1$.

Proof. Use Propositions 7 and 8 and previous remark.

Remark. If T is a compact operator in \mathscr{R}' then $Tz_0=0$ and hence $\ker(T)$ is not trivial. If T satisfies also the conditions of Proposition 8 then $\ker(T)$ is the subspace generated by the vector z_0 . Indeed, let Tx=0 for some $x \in l^2$, $0 \neq x = (\xi_1, \xi_2, \xi_3, \ldots)$. Then

$$\eta_n = s_n \xi_n + \frac{1}{n} \sum_{m=n+1}^{\infty} a_m \xi_m = 0$$
 for all $n \ge 1$.

So $\eta_1 = \eta_2$ implies $a_1 \ (\xi_2 - \frac{1}{2}\xi_1) = 0$. Since $\{a_n\}_1^{\infty}$ is orthogonal to z_0 we must have $a_1 \neq 0$ otherwise $\{a_n\}_1^{\infty}$ will be orthogonal to z_1 contradicting our hypothesis. Therefore $\xi_2 = \frac{1}{2}\xi_1$. Also since $\{a_n\}_1^{\infty}$ is not orthogonal to any of z_n , $n \geq 1$, we have $s_n \neq 0$ for every $n \geq 1$. Hence an induction argument shows that $\xi_n = (1/n)\xi_1$ for all $n \geq 1$. That is, x is a multiple of z_0 .

Now we give a new class of compact operators which have simple eigenvalues and a complete sequence of eigenvectors and do not allow strict spectral synthesis. We shall use the following result from [4].

Theorem 10. Let A be a compact operator all of whose non-zero eigenvalues are simple, and let $\{x_n\}_1^{\infty}$ be the corresponding sequence of eigenvectors. The operator A allows strict spectral synthesis if and only if $\{x_n\}_1^{\infty}$ is strongly complete. If $\ker(A) = 0$ the word "strict" can be omitted.

Corollary 11. If T is a compact operator in \mathcal{R}' satisfying the conditions of Proposition 8, then T does not allow strict spectral synthesis.

Proof. Immediate by Theorem 10 and Proposition 8.

3. A reflexivity result

Let $\{\phi_n\}_1^{\infty}$ be, as usual, the standard orthonormal basis for l^2 . Put

$$f_n = \sum_{m=1}^n \phi_m$$
 and $e_n = \phi_n - \phi_{n+1}$ for each $n \ge 1$.

Then the sequences $\{f_n\}_1^{\infty}$ and $\{e_n\}_1^{\infty}$ are bi-orthogonal and each is complete and minimal. Moreover it is shown in [2] that $\{f_n\}_1^{\infty}$ is strongly complete and hence so is $\{e_n\}_1^{\infty}$. Also if

$$\mathcal{R} = \{ \lambda(e_n \otimes f_n) : \lambda \in \mathbb{C} \setminus \{0\}, n \geq 1 \}$$

and $\mathscr{A}(\mathscr{R})$ is the strongly closed algebra generated by \mathscr{R} , then $\mathscr{A}(\mathscr{R}) = \mathscr{R}'$ is maximal abelian. We shall use the following result from [2].

Proposition 12. Let $\{a_n\}_1^{\infty}$ be a sequence of complex numbers and let $s_n = \sum_{m=1}^n a_m$. If

$$\eta_n = s_n \xi_n + \sum_{m=n+1}^{\infty} a_m \xi_m,$$

then the mapping $(\xi_1, \xi_2, \xi_3, \dots, \xi_n, \dots) \to (\eta_1, \eta_2, \eta_3, \dots, \eta_n, \dots)$ defines a bounded linear operator A on l^2 if and only if

- (i) the sequence $\{s_n\}_1^{\infty}$ is bounded, and
 - (ii) $\sup_{n} n \sum_{m=n+1}^{\infty} |a_m|^2 < \infty$.

The operator A is compact if and only if

(iii) $s_n \to 0$ as $n \to \infty$;

and

(iv)
$$n \sum_{m=n+1}^{\infty} |a_m|^2 \rightarrow 0$$
 as $n \rightarrow \infty$.

The matrix picture of this new operator is

$$\begin{bmatrix} a_1 & a_2 & a_3 & a_4 & a_5 & \dots \\ 0 & s_2 & a_3 & a_4 & a_5 & \dots \\ 0 & 0 & s_3 & a_4 & a_5 & \dots \\ 0 & 0 & 0 & s_4 & a_5 & \dots \\ 0 & 0 & 0 & 0 & s_5 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

It is shown in [2] that the norm of A is at most

$$\sup_{n} |s_{n}| + \left(6 \sup_{n} n \sum_{m=n+1}^{\infty} |a_{m}|^{2}\right)^{1/2}.$$

Proposition 13. Let A be a compact operator on l^2 corresponding to a sequence $\{a_n\}_{1}^{\infty}$ as in Proposition 12. If the sequence $\{s_n\}_{1}^{\infty}$ of partial sums is real, strictly monotonic and $s_n \leq M/\sqrt{n}$, $n \geq 1$ where M is a positive constant then the operator A is reflexive and admits spectral synthesis.

Proof. We may assume $s_n > 0$ for all n since we can consider -A instead of A. Define $K_n = \sum_{m=1}^n s_m R_m$ for every $n \in \mathbb{N}$, where $R_m = e_m \otimes f_m$, $m \in \mathbb{N}$. Then $K_n \in \mathscr{A}(\mathcal{R})$ for every $n \in \mathbb{N}$ and for each integer $n \ge 1$, K_n corresponds, via the definition in Proposition 12, to the sequence $\{a'_m\}_1^{\infty}$ with

$$a'_{m} = \begin{cases} a_{m} & m \leq n \\ -s_{n} & m = n+1 \\ 0 & m > n+1 \end{cases}$$

If $\{s'_m\}_1^{\infty}$ is the corresponding sequence of partial sums, then

$$s_m' = \begin{cases} s_m & m \leq n \\ 0 & m > n \end{cases}.$$

It follows from Proposition 12 that for each n

$$||K_{n}|| \leq \sup_{k} |s'_{k}| + \sqrt{6} \left\{ \sup_{k} k \cdot \sum_{m=k+1}^{\infty} |a'_{m}|^{2} \right\}^{1/2}$$

$$= \sup_{k \leq n} |s_{k}| + \sqrt{6} \left\{ \sup_{k \leq n} \left[k \cdot \sum_{m=k+1}^{n} |a_{m}|^{2} + k|s_{n}|^{2} \right] \right\}^{1/2}. \tag{10}$$

Since A is a compact bounded operator in $\mathscr{A}(\mathscr{R})$, there exists a positive constant M_1 such that $k \sum_{m=k+1}^{\infty} |a_m|^2 < M_1$ for all $k \ge 1$. Also by hypothesis, if $k \le n$,

$$|k|s_n|^2 \le ns_n^2$$

 $\le n(M/\sqrt{n})^2 = M^2.$

Hence (10) implies

$$||K_n|| \leq M + \sqrt{6}[M_1 + M^2]^{1/2}.$$

That is, the sequence $\{K_n\}_1^{\infty}$ of operators is norm bounded. Also for n > m

$$K_n f_m = s_m f_m$$
$$= A f_m$$

and so far each fixed m, the sequence $\{K_n f_m\}_{1}^{\infty}$ converges to $A f_m$. But the sequence $\{f_m\}_{1}^{\infty}$ is complete in l^2 and $\{K_n\}_{1}^{\infty}$ is norm bounded. This implies that $\{K_n\}_{1}^{\infty}$ converges strongly to A. Indeed, let $x \in l^2$. Then for a given $\varepsilon > 0$ there exists an integer r such that

$$\left\|x-\sum_{i=1}^{r}\lambda_{i}f_{i}\right\|<\varepsilon$$
 where $\lambda_{i}\in\mathbb{C}$, $i=1,2,\ldots,r$.

Let n > r. Then

$$||K_n x - Ax|| = ||K_n x - \sum_{i=1}^r \lambda_i K_n f_i + \sum_{i=1}^r \lambda_i K_n f_i - Ax||$$

$$\leq ||K_n|| ||x - \sum_{i=1}^r \lambda_i f_i|| + ||\sum_{i=1}^r \lambda_i A f_i - Ax||$$

$$\leq \varepsilon (||K_n|| + ||A||)$$

which implies $||K_n x - Ax|| \to 0$ as $n \to \infty$, since $\{K_n\}_1^{\infty}$ is norm bounded. Hence

$$A = \sum_{n=1}^{\infty} s_n R_n$$
 in the strong operator topology.

We show now that the strongly closed algebra \mathscr{A} generated by A and the identity is equal to $\mathscr{A}(\mathscr{R})$. It is enough to show that $R_n \in \mathscr{A}$ for every $n \in \mathbb{N}$. Fix $x \in l^2$. Then, since $A = \sum_{n=1}^{\infty} s_n R_n$ (strongly) and $R_m R_n = \delta_{mn} R_n$, we have

$$\left\| \left(\frac{A}{s_1} \right)^k x - R_1 x \right\| = \left\| \frac{1}{s_1} \sum_{n=2}^{\infty} \left(\frac{s_n}{s_1} \right)^{k-1} s_n R_n x \right\|$$

$$\leq \frac{1}{s_1} \left(\frac{s_n}{s_1} \right)^{k-1} \left\| \sum_{n=2}^{\infty} s_n R_n x \right\|. \tag{11}$$

Since $\sum_{n=1}^{\infty} s_n R_n x = Ax$ the sequence $\{\sum_{n=k}^{\infty} s_n R_n x\}_{k=1}^{\infty}$ converges to zero and so it is bounded. Hence the right hand side of (11) tends to zero as $k \to \infty$. This implies that $R_1 \in \mathscr{A}$. Now if we put $A_1 = A - s_1 R_1$ then

$$\left\| \left(\frac{A_1}{s_2} \right)^k x - R_2 x \right\| \leq \frac{1}{s_2} \left(\frac{s_3}{s_2} \right)^{k-1} \left\| \sum_{n=3}^{\infty} s_n R_n x \right\|$$

which implies $||(A_1/s_2)^k x - R_2 x|| \to 0$ as $k \to \infty$ and therefore $R_2 \in \mathcal{A}$.

Using induction we get $R_n \in \mathcal{A}$ for all $n \in \mathbb{N}$ and so $\mathcal{A} = \mathcal{A}(\mathcal{R})$. Since \mathcal{R} is a commuting family, we have lat $\mathcal{R} = \text{lat } \mathcal{A}(\mathcal{R})$ and since $\mathcal{A}(\mathcal{R})$ is maximal abelian Theorem 5.3 in [2] implies $\mathcal{A}(\mathcal{R}) = \text{Alg Lat } \mathcal{R} = \text{Alg Lat } \mathcal{A}(\mathcal{R}).$

Hence $\mathscr{A}(\mathscr{R})$ is reflexive and so is \mathscr{A} . Finally from Corollary 6.5 of [2] it is obvious that A admits spectral synthesis.

Corollary 14. Let A be a compact operator on l^2 determined by the sequence $\{a_n\}_{1}^{\infty}$ as in Proposition 12. If $\{s_n\}_{1}^{\infty}$ is real, strictly monotonic and $\sum_{n=1}^{\infty} s_n < \infty$ then A is reflexive operator and admits spectral synthesis.

Proof. Since we can suppose $s_n > 0$, $n \ge 1$ and since then $ns_n \le \sum_{k=1}^n s_k$ and $\sum_{k=1}^\infty s_k < \infty$ there exists a constant M > 0 such that $ns_n \le M$ for all n. Now use Proposition 13.

Remark. It is shown in [2] that the sequence $\{G_k\}_{1}^{\infty}$, where

$$G_k = \frac{1}{k} \sum_{m=1}^k \sum_{n=1}^m e_n \otimes f_n$$
$$= \frac{1}{k} \sum_{m=1}^k \sum_{n=1}^m R_n$$

tends strongly to the identity *I*. Since $G_k \in \mathcal{A}(\mathcal{R})$, $k \ge 1$ for any $A \in \mathcal{A}(\mathcal{R})$ the sequence $\{AG_k\}_1^{\infty}$ converges strongly to *A*. In particular if *A* is a compact operator in $\mathcal{A}(\mathcal{R})$ the sequence $\{AG_k\}_1^{\infty}$ converges to *A* in the norm topology. (see [6, Corollary 4.4, p. 25]). Hence every compact operator in $\mathcal{A}(\mathcal{R})$ is a uniform limit of finite rank operators in the algebra.

4. Subnormality and the algebra $\mathscr{A}(\mathscr{F})$

Let \mathscr{F} be a set of vectors in a separable Hilbert space H and let $\mathscr{A}(\mathscr{F})$ be the algebra of bounded linear operators on H having the set \mathscr{F} of vectors as eigenvectors. That is,

$$\mathscr{A}(\mathscr{F}) = \{ A \in \mathscr{B}(H) : \text{for all } f \in \mathscr{F}, \text{ there exists } \lambda_f \in \mathbb{C} \text{ with } Af = \lambda_f f \}.$$

It is clear that $\mathscr{A}(\mathscr{F})$ is a weakly (and hence a strongly) closed subalgebra of $\mathscr{B}(H)$ containing the identity operator I.

A necessary condition for an operator $A \in \mathcal{A}(\mathcal{F})$ with simple eigenvalues to be subnormal is that \mathcal{F} is orthogonal. To see this, suppose A is a subnormal operator in $\mathcal{A}(\mathcal{F})$ with simple eigenvalues. Then A has a normal extension. In other words there exists a normal operator B on a Hilbert space K such that the Hilbert space H is a subspace of K, invariant under B and the restriction of B to H is the operator A. Each eigenvalue for A is also an eigenvalue for B with the same corresponding eigenvector. Since the eigenvectors of a normal operator corresponding to different eigenvalues are orthogonal, the set \mathcal{F} must be an orthogonal set. Also since H is separable \mathcal{F} is at most countable.

Now consider the algebras $\mathscr{A}(\phi)$, where ϕ is the set of all characteristic functions $\phi_{\alpha} = \chi_{[\alpha, 1]}, \ 0 \le \alpha < 1$ in $L^p[0, 1], \ (1 (see [1], p. 80), and <math>\mathscr{A}(\mathscr{F})$ with $\mathscr{F} = \{f_n : n \ge 1\}$ where $f_n = \sum_{m=1}^n \phi_m$ and $\{\phi_m\}_1^{\infty}$ the standard basis for l^2 , as in Section 3. Then $\mathscr{A}(\mathscr{F}) = \mathscr{R}' = \mathscr{A}(\mathscr{R})$. Since ϕ is uncountable and the vectors $\{f_n : n \ge 1\}$ are not mutually orthogonal it follows from the previous discussion that none of the known reflexive operators in the algebras $\mathscr{A}(\phi)$ and $\mathscr{A}(\mathscr{F}) = \mathscr{A}(\mathscr{R})$ is subnormal.

It is obvious that an operator A is reflexive if and only if $S^{-1}AS$ is reflexive for some bounded invertible operator S. In the sequel we shall show that none of our reflexive operators in the algebras $\mathscr{A}(\phi)$ and $\mathscr{A}(\mathscr{R})$ is similar to a subnormal operator.

Generally, if A is a reflexive operator similar to a subnormal one then there exists an invertible operator S such that SAS^{-1} is subnormal. Suppose that λ is an eigenvalue of A with corresponding eigenvector x_{λ} . Then,

$$(SAS^{-1})(Sx_{\lambda}) = SAx_{\lambda} = \lambda Sx_{\lambda}.$$

That is, Sx_{λ} is an eigenvector of SAS^{-1} with corresponding eigenvalue λ . Therefore if A has simple eigenvalues, the vectors

$$\{Sx:x \text{ is an eigenvector for } A\}$$

are mutually orthogonal.

Now let us consider the algebras $\mathscr{A}(\phi)$ and $\mathscr{A}(\mathscr{F})$. If S is an invertible operator then

the set $\{S\phi_{\alpha}: \phi_{\alpha} \in \phi, \alpha \in [0, 1)\}$ is uncountable and so it is not orthogonal. Also the set of vectors $\{Sf_n: f_n \in \mathscr{F}, n \geq 1\}$ is not orthogonal. For otherwise $\{(Sf_n/||Sf_n||): n \geq 1\}$ will be a complete orthonormal set. But then

$$\left\{S^{-1}\left(\frac{Sf_n}{\|Sf_n\|}\right): n \ge 1\right\} = \left\{\frac{f_n}{\|Sf_n\|}: n \ge 1\right\}$$

must be an unconditional (permutable) basis for l^2 (see [3], Theorem 2.2, p. 315). This is impossible, by Theorem 3.1, p. 20, of [7]. Therefore there is no reflexive operator in any of the algebras $\mathscr{A}(\phi)$ and $\mathscr{A}(\mathscr{F})$ with simple eigenvalues similar to a subnormal operator.

Acknowledgement

I wish to thank Dr. J. A. Erdos for his guidance and his valuable suggestions.

REFERENCES

- 1. J. A. Erdos, On certain abelian algebras of operators and their invariant subspace lattices, *Proc. London Math. Soc.* (3) 29 (1974), 77-97.
- 2. J. A. Erdos and W. E. Longstaff, Commuting families of operators of rank 1, Proc. London Math. Soc. (3) 44 (1982), 161-177.
- 3. I. C. Gohberg and M. G. Krein, Introduction to the theory of linear non-selfadjoint operators (Transl. Monographs 18, Amer. Math. Soc. Providence, R.I., 1969).
- 4. A. S. Markus, The problem of spectral synthesis for operators with point spectrum, *Math. U.S.S.R.—Izvestija* 3 (1970), 670–696.
- 5. R. F. Olin and J. E. Thomson, Algebras of subnormal operators, J. Funct. Anal. 37 (1980), 271-301.
- 6. C. Pearcy, Some recent developments in operator theory C.B.M.S. Regional Conference Series in Mathematics No. 36, Amer. Math. Soc. Providence, 1978).
 - 7. I. Singer, Bases in Banach spaces I. (Springer Verlag, Berlin, 1970).

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
DEPARTMENT OF MATHEMATICS
42, 28th October St.
GR-106 82 Athens
Greece