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GENERALIZED INVERSES AND SPECIAL TYPE
OPERATOR ALGEBRAS

Sotirios Karanasios and Dimitrios Pappas∗

Abstract. Let H be a complex Hilbert space. In this work we compute the gen-
eralized inverse of a finite rank operator on H and give necessary and sufficient
conditions such that the generalized inverse of the product of two rank-1 oper-
ators is the product of the generalized inverses of the corresponding operators
in reverse order. We also consider the generalized inverse of products of special
type operators. We examine when the generalized inverse of a rank-1 operator
in a nest algebra belongs to the nest algebra and give necessary conditions for an
operator in a nest algebra with a continuous nest so that its generalized inverse
belongs to the nest algebra. Finally, we give equivalent conditions so that an
operator with closed range, factors with respect to a closed subalgebra of a von
Neumann algebra of operators on H.

1. Introduction

Let T be a bounded linear operator on a complex Hilbert space H. It is
known that when T is a singular operator with closed range then its unique
generalized inverse T+ (known also as Moore-Penrose inverse) is defined. A
lot of work concerning generalized inverses especially in finite dimension has
been carried out(e.g. [2]). The generalized inverse operator is a powerful tool
for characterization of different classes of operators in finite and in infinite
dimension (e.g., normal, hyponormal, EP operators: [3], [5], [4], [9]). In
this paper, we study the generalized inverses of finite rank operators, and
we provide necessary and sufficient conditions for special type products of
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operators so that the reverse order rule for the Moore-Penrose inverse (see
e.g., [1], [4]) is satisfied. Moreover, we examine when the generalized inverse
of a rank-1 operator in a nest algebra belongs also to the nest algebra.
Furthermore we give necessary conditions for an operator in a nest algebra
with a continuous nest so that its generalized inverse belongs also to the nest
algebra. Finally, we use the Moore-Penrose inverse for a singular operator
T to admit factorizations of T with respect to a closed unital subalgebra of
a von Neumann algebra of operators on a complex Hilbert space.

2. Preliminaries and Notation

Let H be a complex Hilbert space. B(H) denotes the algebra of bounded
linear operators onH, and for T ∈ B(H), R(T ) denotes the range of T , N (T )
the kernel of T and Lat T denotes the set of all closed invariant subspaces
of T .

The generalized inverse, known as Moore-Penrose inverse, of an operator
T ∈ B(H) with closed range, is the unique operator satisfying the following
conditions:

TT+ = (TT+)?, T+T = (T+T )?, TT+T = T, T+TT+ = T+,

where T ? denotes the adjoint operator of T .

It is easy to see that R(T+) = N (T )⊥, TT+ is the orthogonal projection
ofH ontoR(T ) and that T+T is the orthogonal projection ofH ontoN (T )⊥.
It is well known that R(T+) = R(T ∗). An operator T ∈ B(H) is called a
finite rank operator if the dimension of its range is finite. The number n =
dimR(T ) is called the rank of T and it is denoted by r(T ). For every rank
one operator (rank-1) T there are vectors e, f ∈ H such that Tx = 〈x, e〉f ,
for every x ∈ H. The rank-1 operator T is denoted by e ⊗ f . The adjoint
T ∗ of T is the rank-1 operator T ∗ = f ⊗ e. A subset N of the set of closed
subspaces of a Hilbert space H is called a nest if it is totally ordered by
inclusion. The nest N is called complete if {0}, H ∈ N and for any subset
N0 of N the closed subspaces ∩{L : L ∈ N0}, cl[∪{L : l ∈ N0}] belong to
N . For M ∈ N we denote by M− the immediate predecessor of M which
is the closed subspace M− = ∪{L : L ∈ N , L ⊂ M}. A nest N is called
continuous if M = M− for all M ∈ N . By AlgN we denote the algebra of
all bounded linear operators on H which leave invariant each member of the
complete nest N . The algebra AlgN is called nest algebra.
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3. The Generalized Inverse of a Finite Rank Operator

In this section we compute the generalized inverse of a finite rank operator
and give necessary and sufficient conditions such that the generalized inverse
of the product of two rank-1 operators is the product of the generalized
inverses of the corresponding operators in reverse order. We also consider
the generalized inverse of products of special type operators. First we study
the case of a rank-1 operator.

Theorem 3.1. Let T = e ⊗ f be a rank-1 operator on a Hilbert space H
and let T+ be its generalized inverse. Then T+ is also rank-1 and has the
representation T+ = f1 ⊗ e, where f1 = ‖f‖−2‖e‖−2f .

Proof. Let T = e ⊗ f . Since R(T+) = R(T ∗) and T ∗ is of rank one we
have that T+ is also of rank one and it will have the form T+ = f1 ⊗ e.
Thus to determine T+ it is enough to determine the vector f1. We have
T+Te = e, since T+T is a projection on R(T ∗). Hence e = T+(〈e, e〉f) =
‖e‖2〈f, f1〉e which implies 〈f, f1〉 = ‖e‖−2. Let f1 = αf + u, where u⊥f .
Then u ∈ N (T+) = N (T ∗) and so T+f1 = ‖f1‖2e = (|α|2‖f‖2+‖u‖2)e. Also
T+f1 = T+(αf + u) = αT+f = α〈f, f1〉e = |α|2‖f‖2e. Therefore u = 0 and
f1 = αf . Now using the relation 〈f, f1〉 = ‖e‖−2, we get α = ‖e‖−2‖f‖−2

and therefore f1 = ‖e‖−2‖f‖−2f .

Corollary 3.1. Let T = e⊗ f be a rank-1 operator. Then ‖T+‖ = ‖T‖−1.

Proof. It is evident that

‖T+‖ = ‖f1‖ ‖e‖ =
1

‖f‖2‖e‖2
‖f‖ ‖e‖ =

1
‖f‖ ‖e‖ = ‖T‖−1.

Proposition 3.1. Let T1 = e1⊗f1 and T2 = e2⊗f2 be two rank-1 operators.
Then (T1T2)+ = T+

2 T+
1 if and only if f2, e1 are linearly dependent.

Proof. It is clear that T1T2 = 〈f2, e1〉(e2 ⊗ f1) and (λT )+ = 1
λT+ for

any λ ∈ C, λ 6= 0, and for any operator T ∈ B(H) with closed range. By
Theorem 3.1 it follows that

(T1T2)+ =
f1 ⊗ e2

〈f2, e1〉‖f1‖2‖e2‖2
and T+

2 T+
1 =

〈e1, f2〉f1 ⊗ e2

‖e1‖2‖f1‖2‖e2‖2‖f2‖2
.

Therefore, by simple calculations it is obtained that

(T1T2)+ = T+
2 T+

1 if and only if |〈f2, e1〉| = ‖f2‖2‖e1‖2.
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The last equality is valid if and only if the vectors f2, e1 are linearly depen-
dent (The condition under which the Cauchy-Schwarz inequality becomes
an equality).

The following proposition is a restatement of a part of R. Bouldin’s the-
orem 3.1 [1] (see also [8], [11]). It will be used to prove our next result.

Proposition 3.2. Let A,B be bounded operators on H with closed range.
Then (AB)+ = B+A+ if and only if the following three conditions hold:

i) The range of AB is closed,

ii) A+A commutes with BB∗,

iii) BB+ commutes with A∗A.

Proposition 3.3. Let A, T ∈ B(H) be two operators such that A is invert-
ible and T has closed range. Then

(AT )+ = T+A−1 if and only if R(T ) ∈ Lat (A∗A).

Proof. We will use Proposition 3.2. The first two conditions of Proposi-
tion 3.2 are easily verified. In order for the third condition to be valid we
must prove that the operator TT+ commutes with the operator A∗A. Since
the operator TT+ is the projection of H onto the range of T and A∗A is
selfadjoint this is equivalent to (R)(T ) ∈ Lat (A∗A).

Corollary 3.2. If T = e⊗ f is a rank-1 operator and A ∈ H is invertible
then (AT )+ = T+A−1 if and only if f is an eigenvector of A∗A.

Let T be a finite rank operator with r(T ) = n. Then T has the form
T =

∑n
i=1 ei ⊗ fi, where the vectors {ei : i = 1, 2, . . . , n} are orthonormal

and the vectors {fi : i = 1, 2, . . . , n} are linearly independent.

Theorem 3.2. If T =
∑n

i=1 ei⊗fi is a rank-n operator then its generalized
inverse is also a rank-n operator and it is defined by T+x =

∑n
i=1 λi(x)ei,

where the functions λi are the solution of an appropriately defined n × n
linear system.

Proof. If T =
∑n

i=1 ei ⊗ fi then R(T ) = cls{f1, f2, . . . , fn} and R(T+) =
R(T ∗) = cls{e1, e2, . . . , en}. Therefore for every x ∈ H we have T+x =
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∑n
i=1 λi(x)ei. Hence to determine T+ one must calculate the functions λi,

i = 1, 2, . . . , n. From T ∗x = T ∗TT+x, we get

n∑

i=1

〈x, fi〉ei = T ∗x = T ∗TT+x =
n∑

i=1

n∑

j=1

λj(x)〈fi, fj〉ei.

The last relation leads to the following linear system of n equations in n
unknowns

〈x, fi〉 =
n∑

j=1

λj(x)〈fi, fj〉, i = 1, 2, . . . , n.

The determinant of the system is the Gram determinant of the linear inde-
pendent vectors f1, . . . , fn and hence the system has a unique solution with
unknowns the functions λi, i = 1, 2, . . . , n.

In particular the generalized inverse T+ of a rank-2 operator

T = e1 ⊗ f1 + e2 ⊗ f2

is the operator

T+ =
1

DT

{(‖f2‖2f1 − 〈f1, f2〉f2

)⊗ e1 +
(‖f1‖2f2 − 〈f2, f1〉f1

)⊗ e2

}
,

where DT = ‖f1‖2‖f2‖2 − |〈f1, f2〉|2.

4. Generalized Inverses and Nest Algebras

In the sequel we examine when the generalized inverse of a rank-1 oper-
ator in a nest algebra belongs to the nest algebra. We also give necessary
conditions for an operator in a nest algebra with a continuous nest so that
its generalized inverse belongs to the nest algebra.

Theorem 4.1. Let AlgN be a nest algebra and T = e⊗ f ∈ AlgN . Then
T+ ∈ AlgN if and only if there exist a subspace M ∈ N , such that M ∩
(M−)⊥ 6= ∅ and f, e ∈ M ∩ (M−)⊥.

Proof. It is well known that T = e ⊗ f ∈ AlgN if and only if there
exists a subspace M ∈ N , such that f ∈ M and e ∈ M⊥− (see e.g. [6]). It
is obvious that if f, e ∈ M ∩ (M−)⊥ then T, T+ ∈ AlgN . Conversely let
T+ = f1 ⊗ e and T+ ∈ AlgN . Then there exists a subspace L ∈ N such
that e ∈ L and f1 ∈ L⊥−. Since the nest is totally ordered, the subspaces
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M, L are comparable. The cases M ⊂ L or L ⊂ M lead to a contradiction.
For example, if M ⊂ L then L⊥− ⊆ M⊥ and so f1 ∈ M⊥. But f1 = αf and
f ∈ M . Therefore f = 0 which is a contradiction. Similarly, if L ⊂ M we
get e = 0 which is also a contradiction. Hence, we must have M = L and
therefore e, f ∈ M ∩ (M−)⊥.

Remark 4.1. We pointed out that Theorem 4.1 is valid also in the case where
we replace the nest by a commutative subspace lattice (csl). As a consequence of
Theorem 4.1, we also have that for a continuous nest, the generalized inverse of
every rank-1 operator in the corresponding nest algebra never belongs to the nest
algebra.

In the sequel, under certain conditions, we show that T+ ∈ AlgN where
N is a continuous nest and T ∈ AlgN . This generalizes a corresponding
result in [7] when T is invertible.

Theorem 4.2. Let N be a continuous nest, AlgN the corresponding nest
algebra and T ∈ AlgN an operator such that T+ = A+K, where A ∈ AlgN
and K is a compact operator. If the orthogonal projections T+T, TT+ belong
to AlgN then T+ ∈ AlgN .

Proof. For simplicity let P = TT+ and Q = T+T . We have

T+ = A + K ⇒ TT+ = TA + TK ⇒ TK = P − TA.

The compact operator TK belongs to the nest algebra AlgN , since the
operator P − TA belongs to AlgN . Moreover, since the nest is continuous
the operator TK is quasinilpotent and hence the operator I−TK is invertible
with (I − TK)−1 =

∑∞
n=0(TK)n. Therefore (I − TK)−1 ∈ AlgN . But

T+ = A + K = Q(A + K) = QA + T+TK

⇒ T+(I − TK) = QA ⇒ T+ = QA(I − TK)−1.

Therefore, T+ ∈ AlgN .

5. A Factorization Result

A well-known problem in operator theory is the following question (for a
discussion see [13]): If F is a unital C∗-algebra and A ⊆ F is a unital closed
subalgebra then given an invertible element T ∈ F , when is it possible to
write T ∗T = A∗A, where A,A−1 ∈ A? We consider a version of this problem,
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using generalized inverses, when F is a von Neumann algebra of operators
on a Hilbert space H and T ∈ F is an operator (not necessary invertible)
with closed range. The techniques we use are based on ideas from [13].

Theorem 5.1. Suppose F is a von Neumann algebra of operators on a
Hilbert space H and let A ⊆ F be a closed unital subalgebra. For an operator
T ∈ F the following are equivalent:

1. There exist an operator S ∈ A with closed range R(S) and a partial
isometry W ∈ F with initial space R(S) and final space R(T ) such that
S, S+ ∈ A and T = WS.

2. There exists an operator S ∈ A with closed range such that S+ ∈ A
and T ∗T = S∗S.

Proof. 1. ⇒ 2. From T = WS it follows that T ∗ = S∗W ∗, as well as
T ∗T = S∗W ∗WS = S∗S.

2. ⇒ 1. Note that since F is a von Neumann algebra and T ∈ F we have
from [12] that T+ ∈ F and from T ∗T = S∗S, multiplying both sides from
the left by T+∗, we get

T+∗T ∗T = T+∗S∗S ⇒ T = T+∗S∗S.(5.1)

Let W = T+∗S∗. Then W ∈ F . We will show that W is the appropriate
partial isometry. It is W ∗W = ST+T+∗ = S(T ∗T )+S∗ = S(S∗S)+S∗ =
SS+S+∗S∗ = SS+, where SS+ is the orthogonal projection on the range
of S. Similarly, WW ∗ = T+∗S∗ST+ = T+∗T ∗TT+ = TT+, where TT+

is the orthogonal projection on the range of T . Therefore W is a partial
isometry with the required initial and final spaces. From equation (5.1) and
the definition of W , we have T = WS.

Proposition 5.1. Suppose F is a von Neumann algebra of operators on
a Hilbert space H and let A ⊆ F be a closed unital subalgebra. If for an
operator T ∈ F there exists an operator S ∈ A with closed range such that
S+ ∈ A and T ∗T = S∗S then there exist an operator Y ∈ A with R(I − Y )
closed and (I−Y )+ ∈ A and an operator Z ∈ A∗ such that T = TY +T+∗Z.

Proof. We have T ∗T = S∗S ⇒ T+∗T ∗T = T+∗S∗S ⇒ T = T+∗S∗S and

TS+ = T+∗S∗SS+ = T+∗S∗.(5.2)

Set Y = I − S+ and Z = S∗. Then, using (5.2),

TY + T+∗Z = T − TS+ + T+∗S∗ = T.
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Results which are related to this kind of problems could be found also in
[10].
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