ON THE NEST ALGEBRA-MODULE FACTORIZATIONS

S. KARANASIOS

(Received June 16, 2000)

Submitted by K. K. Azad

Abstract

In this paper, we define special type nest algebra module factorizations of a bounded operator and prove a factorization result when the module is determined by a decreasing order homomorphism. This is a generalization of the corresponding nest case.

1. Introduction

Let \mathcal{H} be a Hilbert space, $\mathcal{B}(\mathcal{H})$ be the set of bounded operators on \mathcal{H} , \mathcal{E} be a complete nest of projections, $\mathcal{A} = \operatorname{Alg} \mathcal{E}$ be the corresponding algebra and \mathcal{U} be an \mathcal{A} -module determined by the order homomorphism $\phi: E \to \widetilde{E}, E \in \mathcal{E}$. Then

$$U = \{X \in \mathcal{B}(\mathcal{H}) : XE = \widetilde{E}XE, \text{ for all } E \in \mathcal{E}\}.$$

The module U is an algebra if and only if $\tilde{\tilde{E}} \leq \tilde{E}$ for all $E \in \mathcal{E}$, (see [2, Lemma 1.8]).

We recall the following definition from [4].

© 2000 Pushpa Publishing House

²⁰⁰⁰ Mathematics Subject Classification: Primary 47A68.

Key words and phrases: nest algebra, module, radical, factorization.

Definition 1. The set $\mathcal{R}(\mathcal{E}, \sim)$ consists of all the operators $X \in \mathcal{U}$ such that for every $\varepsilon > 0$ there exists a partition \mathcal{P} of \mathcal{E} such that $\|\Delta \widetilde{E}_i X \Delta E_i\| < \varepsilon, 1 \le i \le n$.

The set $\mathcal{R}(\mathcal{E}, \sim)$ is norm closed and has the property that for every $X \in \mathcal{R}(\mathcal{E}, \sim)$ the module diagonal integral $\mathcal{D}(X)$ is zero. Hence

$$X=(m)\int_{(\mathcal{E}, \sim)} \widetilde{E}XdE.$$

If we restrict the order homomorphism ϕ suitably we can get a bijection map ϕ_1 . Indeed for each element Q in $\phi(\mathcal{E})$ there is a largest element $E \in \mathcal{E}$ such that $\phi(E) = Q$. Let \mathcal{E}_1 be the nest consisting of these largest elements corresponding to the members of $\phi(\mathcal{E})$. The order homomorphism $\phi_1 = \phi|_{\mathcal{E}_1} \colon \mathcal{E}_1 \to \phi(\mathcal{E})$ is a bijection and $U = \operatorname{Op} \phi = \operatorname{Op} \phi_1$. It is proved in [3] that $\operatorname{Op} \phi = \{X \in \mathcal{B}(\mathcal{H}) \colon XE \subseteq \phi(E) \text{ for every } E \in \mathcal{E}_1\}$. Let ψ be the inverse of ϕ_1 . Define

$$\mathcal{V} = \operatorname{Op} \psi = \{X \in \mathcal{B}(\mathcal{H}) : (I - E) X \widetilde{E} = 0 \text{ for every } E \in \mathcal{E}_1\}.$$

Then \mathcal{V} contains $(U^{\perp})^*$. When the order homomorphism is decreasing, U is an algebra and $(U^{\perp})^*$ contains the identity. The following set $\mathcal{V}_{nil}(U)$ is defined in [6]:

$$\mathcal{V}_{nil}(\mathcal{U}) = \{X \in \mathcal{U} : YX \text{ is quasinilpotent for each } Y \in \mathcal{V}\}.$$

We also recall a part of Theorem 3.10, [6] and restate it for our use.

Theorem 1. For an $X \in U$ the following are equivalent:

(i)
$$X \in \mathcal{V}_{nil}(U)$$
.

(ii)
$$X \in \mathcal{R}(\mathcal{E}, \sim)$$
.

A consequence of the above is that when the order homomorphism, which describes the module U, is decreasing, then the set $\mathcal{R}(\mathcal{E}, \sim)$ consists of quasinilpotent operators.

2. The Main Result

In the sequel, we define special type factorizations concerning an operator $A \in \mathcal{B}(\mathcal{H})$, according to the set $\mathcal{R}(\mathcal{E}, \sim)$.

Definition 2. Let A be an invertible operator. A representation

$$A = (I + R)S$$

is called a left- $\mathcal{R}(\mathcal{E}, \sim)$ factorization of A with respect to the module \mathcal{U} if $R \in \mathcal{R}(\mathcal{E}, \sim)$ and $S \in \mathcal{U}^{\perp}$. A left- $\mathcal{R}(\mathcal{E}, \sim)$ factorization of A is called left regular if I + R is invertible and $(I + R)^{-1} \in (\mathcal{U}^{\perp})^*$, right regular if S is invertible and $S^{-1} \in \mathcal{U}^*$ and regular if it is both left and right regular. A right- $\mathcal{R}(\mathcal{E}, \sim)$ factorization is defined similarly. A left- $\mathcal{R}(\mathcal{E}, \sim)$ factorization of A is called left compact if R is a compact operator.

For other types of module factorizations, see [5]. Note that the notions left regular and regular are different from those defined in Definition 2, [5], since $I + R \notin U$ because U does not contain the identity. When the order homomorphism is the identity map, the module U is a nest algebra and the $\mathcal{R}(\mathcal{E}, \sim)$ -factorizations defined above coincide with the radical factorizations defined in [1].

Lemma 1. If U is determined by a decreasing order homomorphism, then a left- $\mathcal{R}(\mathcal{E}, \sim)$ right regular factorization of A with respect to U is regular.

Proof. Since $\widetilde{E} \leq E$, every $E \in \mathcal{E}$ implies $\widetilde{\widetilde{E}} \leq \widetilde{E}$. For every $E \in \mathcal{E}$, the module U is an algebra. Also $(I+R)E=E+\widetilde{E}RE=E(I+R)E$ for every $E \in \mathcal{E}$ and hence $I+R \in \operatorname{Alg} \mathcal{E}$. So $R \in \operatorname{Alg} \mathcal{E}$. Since R is quasinilpotent $(I+R)^{-1}$ exists and belongs to $\operatorname{Alg} \mathcal{E}$. The module U^{\perp} contains the identity and, therefore, $\operatorname{Alg} \mathcal{E}^{\perp} = (\operatorname{Alg} \mathcal{E})^* \subseteq U^{\perp}$ which implies $\operatorname{Alg} \mathcal{E} \subseteq (U^{\perp})^*$. Hence $(I+R)^{-1} \in (U^{\perp})^*$ and, therefore, the factorization is regular.

Theorem 2. Let A be an invertible operator, \mathcal{E} be a complete nest and U be an Alg \mathcal{E} module which is determined by a decreasing order homomorphism $\phi: \mathcal{E} \to \mathcal{E}$, $\phi(E) = \widetilde{E}$. Suppose that A has a left- $R(\mathcal{E}, \sim)$ right regular factorization and the operators $EA^{-1}\widetilde{\widetilde{E}}$ and $\left[I - E + EA^{-1}\widetilde{\widetilde{E}}\right]^{-1}$ are invertible for every $E \in \mathcal{E}$, $\widetilde{\widetilde{E}} \neq 0$. Then the integral

$$(m)\int_{(\mathcal{E}, \sim)} \left[I - E + EA^{-1} \widetilde{\widetilde{E}}\right]^{-1} EA^{-1} dE$$

exists and the factorization is given by A = (I + R)S, where

$$R = -(m) \int_{(\mathcal{E}, \sim)} \left[I - E + E A^{-1} \widetilde{\widetilde{E}} \right]^{-1} E A^{-1} dE$$

and $S \in U^{\perp}$.

If, in addition, the factorization is left compact, then the operator $\widetilde{E}AE^{\perp}$ is compact for every $E \in \mathcal{E}$.

Proof. Suppose that A=(I+R)S is the left- $\mathcal{R}(\mathcal{E},\sim)$ right regular factorization of A. By Lemma 1, the factorization is regular and hence $R\in\mathcal{R}(\mathcal{E},\sim)$, $(I+R)^{-1}\in(\mathcal{U}^{\perp})^*$, $S\in\mathcal{U}^{\perp}$ and $S^{-1}\in\mathcal{U}^*$. From Lemma 4, [5] the operator $\widetilde{E}SE$ is invertible with inverse the operator $ES^{-1}\widetilde{E}$. Now from $EA^{-1}\widetilde{\widetilde{E}}=ES^{-1}(I+R)^{-1}\widetilde{\widetilde{E}}=(ES^{-1}\widetilde{E})\Big[\widetilde{E}(I+R)^{-1}\widetilde{\widetilde{E}}\Big]$, we have that the operator $\widetilde{E}(I+R)^{-1}\widetilde{\widetilde{E}}$ is invertible for $E\in\mathcal{E}$, $\widetilde{\widetilde{E}}\neq 0$ and since $\Big[\widetilde{\widetilde{E}}(I+R)\widetilde{E}\Big]\Big[\widetilde{E}(I+R)^{-1}\widetilde{\widetilde{E}}\Big]=\widetilde{\widetilde{E}}$, its inverse is the operator

 $\widetilde{\widetilde{E}}(I+R)\widetilde{E}$. Hence $\widetilde{E}(I+R)^{-1}\widetilde{\widetilde{E}}(I+R)\widetilde{E}=\widetilde{E}$ for every $E\in\mathcal{E},\ \widetilde{\widetilde{E}}\neq0$. Therefore, since

$$\begin{bmatrix} I - E + EA^{-1}\widetilde{E} \end{bmatrix} \begin{bmatrix} I - \widetilde{E} + (I + R)\widetilde{E}S \end{bmatrix} = I - E$$

$$= ES^{-1}(I + R)^{-1}\widetilde{E}(I + R)\widetilde{E}S$$

$$= I - E + ES^{-1}\widetilde{E}S$$

$$= I - E + ES^{-1}\widetilde{E}S = I,$$

we have that

$$\left[I-E+EA^{-1}\widetilde{\widetilde{E}}\right]^{-1}=I-\widetilde{E}+(I+R)\widetilde{E}S.$$

Now if we put $X = (I + R)^{-1} - I$, then $X \in \mathcal{R}(\mathcal{E}, \sim)$ and

$$\left[I - E + EA^{-1}\widetilde{\widetilde{E}}\right]^{-1}\widetilde{\widetilde{E}}A^{-1} = \left[I - \widetilde{E} + (I + R)\widetilde{E}S\right]\widetilde{\widetilde{E}}S^{-1}(I + R)^{-1} \\
= (I + R)\widetilde{E}(X + I).$$

Hence

$$(m)\int_{(\mathcal{E}, \sim)} \left[I - E + EA^{-1} \widetilde{E} \right]^{-1} \widetilde{E}A^{-1} dE = (m)\int_{(\mathcal{E}, \sim)} (I + R) \widetilde{E}(X + I) dE$$
$$= (I + R)(m)\int_{(\mathcal{E}, \sim)} \widetilde{E}X dE$$
$$= (I + R) X = -R.$$

Suppose now that the factorization is left compact. Then the operator R is compact. But $\widetilde{E}AE^{\perp} = \widetilde{E}(I+R)SE^{\perp} = \widetilde{E}(I+R)\widetilde{E}^{\perp}SE^{\perp} = \widetilde{E}R\widetilde{E}^{\perp}SE^{\perp}$. Hence the operator $\widetilde{E}AE^{\perp}$ is compact.

References

- [1] J. A. Erdos, The triangular factorization of operators on Hilbert space, Indiana Univ. Math. J. 22(10) (1973), 939-950.
- [2] J. A. Erdos and S. C. Power, Weakly closed ideals of nest algebras, J. Operator Theory 7 (1982), 219-235.

S. KARANASIOS

- [3] J. A. Erdos, Reflexivity for subspace maps and linear spaces of operators, Proc. London Math. Soc. 3(52) (1986), 582-600.
- [4] S. Karanasios, Triangular integration with respect to a nest algebra module, Indiana Univ. Math. J. 34(2) (1985), 299-317.
- [5] S. Karanasios, The module factorization of operators on Hilbert space, J. Math. Analysis and Appl. 142(1) (1989), 95-100.
- [6] I. Todorov, Bimodules over nest algebras and Dedden's theorem, Proc. Amer. Math. Soc. 127(6) (1999), 1771-1780.

Department of Mathematics

National Technical University of Athens

Zografou Campus

GR 157 80 Zografou

Athens, Greece