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1. Introduction

Let X be a Banach space. If X is finite-dimensional and T is an invertible linear
operator on X then there is a polynomial p such that T~! = p(T). Since the
analogue in the infinite-dimensional case is generally false even in the weak operator
topology (see [5, §1]) it is of interest to look for conditions sufficient to ensure that
T-' is a limit of polynomials in T in the weak (equivalently, strong) operator
topology. Such conditions were given in [4, 6] when X is a Hilbert space. Also,
necessary and sufficient conditions for an invertible operator T on a Hilbert space
such that its inverse T~! is a weak limit of polynomials of T were given in [3, 7].

Here we give sufficient, and necessary and sufficient conditions for such a T when
X is a uniformly convex Banach space.

In Section 2 we prove a lemma which gives a sufficient condition for a bounded
operator on a uniformly convex Banach space to be full. Then we use this to get
analogous results, as in [3], on uniformly convex Banach spaces. We also prove
stronger and more general results than the results in [7] and generalize Lemma 3 of
Section 3 1n [5].

A result due to Erdos in [3] states that if T is an injective quasinilpotent
dissipative operator on a Hilbert space then every maximal nest of subspaces
invariant under T is continuous. It is shown below that this result is also true in a
uniformly convex Banach space when we replace the hypothesis ‘T 1s an injective
dissipative operator’ by ‘0 ¢ V(T) where V(T) is the spatial numerical range of T".

Finally we apply these results to find necessary and sufficient conditions for the
operator T™, the direct sum of n copies of T, to be full for all positive integers n.

In this paper, the term Banach space will mean complex Banach space, subspace
will mean closed subspace and operator will mean bounded linear operator. Let X be
a Banach space. We denote by #(X) the algebra of all bounded operators on X. We
use the symbol X* for the (continuous) dual space of X and \ means ‘set-theoretic
difference’. If S(X) is the unit sphere of X (that is, S(X) = {x € X :||{x|| = 1}) then the
spatial numerical range of an operator T € #(X) denoted by V(T) is defined by
V(T) = {f(Tx): f € S(X*), x € S(X), f(x) = 1}. The numerical range of T € #(X) 1s
defined by V(#(X), T) = { f(TA): f € S(B(X)*), A e S(B(X)), f(A) = 1}. By o(T)
we denote the spectrum of T. For a subset M of X the closure of M is denoted by M

or cl M, the convex hull of M is denoted by co M and the closed convex hull of M is
denoted by co M. It is shown in [1] that co V(T) = V(#(X), T). The smallest

subspace containing each member of a subset M of X (that is, the closed linear span
of M) will be denoted by cls M.
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The operator T € #(X) is called full if T(M) = M for every invariant subspace M
of T. A Banach space X is called strictly convex if and only if x and y are linearly
dependent whenever ||x+ y|| = ||x|| +|lyll; and X is said to be uniformly convex if for
each ¢, 0.<e <2, there corresponds &(¢) > 0 such that the conditions
Ix|| = ||lyll = 1, |lx—y|| = ¢ imply that |3(x+y)|| € 1—03(¢). For any subset .o/ of
24(X) we denote by Lat o the set of all subspaces of X that are invariant under each
member of .&7. A set .4 of subspaces of X is said to be a nest if it is totally ordered by
inclusion. A nest .4 is called complete if it contains (0) and X and i1s complete as a
lattice. If N % (0), N € .47, the subspace N _ is defined by

N_=c{U{Me ¥ :M<S N, M+N}}.

A complete nest is said to be continuous if N_ = N for every non-zero member N. A
nest is said to be maximal if it is not a proper subnest of any nest of subspaces of X.

2. Approximation of inverses

The following lemma 1s a restatement of Lemma 1 1n [10].

LemMMA 1. Let X be a Banach space and let .A” be a nest of subspaces of X. Then
& is maximal if and only if A& is complete and N e &', N # (0) implies that the
quotient space N/N _ is at most one-dimensional.

LeEmMMA 2. Let X be a uniformly convex Banach space. If T is a bounded linear
operator on X with 0¢ V(T), where V(T) denotes the spatial numerical range of T,
then T is full. |

Proof. Suppose that T is not full. Then there exists an invariant subspace N of

T such that T(N) = M is a proper subspace of N. Let x e N\M be a unit vector.
Then Tx e M and by the Hahn—Banach theorem, there exists a continuous linear
functional f e X* such that

fiM)=0 and fix)=1.
If |if]| < 1 then, since f(x) =1 =||x|l, ||fl| = 1 and hence
0= f(Tx)e V(T),

which is a contradiction. Thus ||f]|| > 1. Put g = f|,, the restriction of f to N, and
let h = gllgll”!. Then ||h|| = 1 and he N*.

Since N is a uniformly convex Banach space, there exists a (unique) unit vector
y € N such that h(y) = 1 = ||h||. But h(M) = 0. Hence y ¢ M and so y € N\M. Using
the Hahn—Banach theorem again, there exists an extension ¢ of h to X such that
|o|| = ||kl = 1 and so ¢(y) = 1 and ¢(M) = 0. Since Tye M we have ¢(Ty) = 0
and hence

0= ¢(Ty)e V(T),

which is a contradiction. Therefore T(N) = N andﬁ so T is full.
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COROLLARY 3. I f T is a bounded invertible operator on a uniformly convex Banach
space then 0 ¢ V(T) implies that Lat T < Lat T ™",

Proof. lLet MelLlatT. Since T is an invertible operator, T(M) 1s a closed
subspace of M. Using Lemma 2, 0¢ V(T) implies that T is full. Hence T(M) = M
and therefore M e Lat T~ 1.

THeEOREM 4. Let X be a uniformly convex Banach space and T a bounded linear
quasinilpotent operator on X with 0 ¢ V(T). If M and N are invariant subspaces of T
such that M = N, then dim(N/M) # 1.

Proof. From Lemma 2, T is full and so T(N) = N. Also T is injective, for if x 1s
a unit vector such that Tx = 0 then, since by the Hahn—Banach theorem there exists
a linear functional feX* such that ||f|]|=1 with f(x)=1, we have
0 = f(Tx)e V(T), contradicting our hypothesis.

Suppose that dim (N/M) = 1. Then there exists a unit vector x € N\M such that

cls{x+M} = N/M.

Since N is invariant under T we have Txe N and hence Tx can be expressed
(uniquely) in the form
Tx = ax+y, (1)
where o is a scalar and ye M.
From (1) we have (T—al)xe M and so (T—al)N & M. If « =0 we get a
contradiction. Suppose that « # 0. Then, since T is quasinilpotent, (T —al)™ " exists
and is a norm limit of polynomials in 7. Hence

N

N=(T-al) " (T—a)IN) S (T-ad)"'M = M,
which is also a contradiction. Therefore dim (N/M) + 1.

CoROLLARY 5. If T is a bounded quasinilpotent operator on a uniformly convex
Banach space with 0 ¢ V(T) then any maximal nest of subspaces invariant under T is
CONtInuoOuUs.

Proof. This is immediate from Lemma 1 and Theorem 4.

Remark. It is well known that if T is a bounded operator on a strictly convex
(and hence on a uniformly convex) Banach space and if 4 € V(T) such that |A| = ||T|]
then 4 is an eigenvalue of T (see [1, Theorem 8, p. 93]). It follows from this that if 4 1s

a number in V(T) such that || = ||T]| and A is not an eigenvalue of T (and, in
particular if T has no eigenvalues) then 4 does not belong to V(T). It is easy to see

that any eigenvalue of T is in the V(T). We know also that ¢(T) = V(T) [11].
Therefore any quasinilpotent operator such that 0¢ V(T) is also an example of
an operator with numerical range not closed. The following example from
[8, problem 170], shows that the numerical range is not closed even for compact
operators. Furthermore the example shows that Corollary 5 above describes a non-
empty class of quasinilpotent operators for which any maximal nest of invariant
subspaces (if it exists) is continuous. |
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ExampLe. Let X = I?[0, 1] and let B be the Volterra integration operator on
[0, 1],

(Bf )(x) = jf(t)dt :
O

Put A=I—(+B)"! = BI+B)™'. Then A is a compact quasinilpotent operator

and 0¢ V(A) (see [8, problem 170]). Therefore V(A4) + V(A) and by Corollary 5
every maximal nest of subspaces invariant under A4 is continuous.

It follows easily from [9, Theorem 2.14, p.33] that Lat A = Lat B. Hence we
recapture the well-known result, concerning the Volterra integration operator, that
every maximal nest of subspaces invariant under the Volterra operator is continuous.

Let X™ be the direct sum of n copies of a uniformly convex Banach space. Then
X™ with norm

n 1/p
[lxl} = (Z ”xi”p) , l <p < o0,
i=1
= ) @Dx, x;eX, i=1,2,..,n
i=1

is also a uniformly convex Banach space (see [2, Theorem 1}).
Let (X™)* be the dual space of X™ and let (X*)™ have norm

n 1/q 1
||¢||=(_§ nffnq) o=l

1

q

=T @fie (X0
i=1

PropoSITION 6. The Banach spaces (X™)* and (X*)™ are isometrically
isomorphic under the correspondence I : (X*)™ — (X"™)* defined by

A(i (—Dxi) i fi(x;), x;e X, fieX*i=12,...,n
i=1 =

Proof. 1t is easy to see that J is one to one. Also, if € (X™)*, then, defining
gi(x) = (Z C—Déux) for every xe X and i = 1,2,...,n, we have g;€ X* and

j=1

Y = Z @g;. This 1mplles that . is surjective. Now let ¢ = Z D f e (X*)™,
9"((}.’)) Aandx—Z(—Bx,,xeXt—12 ., n. Then

n n l/q n 1/p
) |m||nxi||s.(_; IIJ}II") (z ||xi||P) |

i=1

A = | X filx)} <
i=1

14




FULL OPERATORS AND APPROXIMATION OF INVERSES 299

n 1/q
Hence ||A|| < (Z | f;ll") . Since X is a uniformly convex Banach space for each f;

there exists a vector x;, |Ix;|| = 1, such that fi(x;,) = ||fil (x;is uniqueif f; # 0). Put

y = _25& (::)(lLf}”qu:xi)-
Then

n 1/p n 1/p
il = (z u|f,-uwnxin)f’) - (_; IIﬂII“)

and

AY) = I AAIPx) = 3G = 3 1Al

_ (z ||f1-||q)”q (Zl ||fi||ﬂ)”p - (z ||f.-||ﬂ)”quy||.

1/q
Hence [|A|| = (Z ||f1||"") and so the map 7 :(X*)™ - (X™)* is an isometric
isomorphism. M=1

LEMMA 7. V(T™) < co V(T) for all positive integers n, where T € #(X) and T®
denotes the direct sum of n copies of T regarded as an operator on X™.

Proof. Let Ae V(T™). Then there exists a linear functional ¢ e (X™)* and
x € X™ such that

p(x)=ll¢ll =llxf =1 and  S(T"x) = 4.

Equivalently there exists f;e X*, x;€ X,i = 1,2, ..., n such that
n l/q n 1/p

Ji{x;)) = (Z Ilffll"") = (Z IIinI") =1
i=1 i=1

and Y fi(Tx,) = 4. But
i=1

IIM;

- 5 i < 3 1A < 3 Il

n 1/q n 1/p
s(j; uffuq) (2 ||xiup) =1,

Therefore 3. fi(x) = 5 1A = X Al = 1. Let

i=1

S = {i|lfllllxdl # 0f ,




300 S. KARANASIOS

X;

Then ¥ # J (since Z Wfillllx;]| = 1), Ji ( ( ))e V(T) for every i e # and

1Al

T Al P50 = 3 f(Tx) = 3. f(Tx) = LecoV(T).

Hence V(T™) < co V(T) for every integer n.

ReEMARK. Let T be a bounded linear operator on a uniformly convex Banach
space X such that 0¢coV(T). Then by Lemma 7, 0¢ V(T™) for all n and so
Lemma 2 implies that T'(n) is a full operator for all integers n

In the sequel we use this fact to find conditions under which the 1nverse of an
invertible operator is a weak limit of polynomlals of the operator.
First, we give a result of independent interest in 1tself, and which is a generalization
of Feintuch’s Lemma 2 in [5].

CoOROLLARY 8. Let X be a uniformly convex Banach space and let X' be the
direct sum of n copies of X, under the norm

where 1 < p < o0. Then co V(T) = co V(T™) for any bounded operator T € #(X)
and hence V(#(X), T) = V(#(X™), T™).

Proof. Let A€ V(T). Then there exist a unit vector x € X and a continuous
linear functional f € X* with norm one such that f(x) =1 and 4 = f(Tx). Put
= PO0P..PO0 and y=xPO0D..3D0. Then, using Proposition 6,
oIl = 1, Iyl = 1, ¢(y) = f(x) = 1, ¢ € (X™)* and

P(T"y)e V(T™).
But ¢(T™y) = f(Tx) = A. Hence A € V(T™) and so V(T) € V(T™). Therefore
co V(T) = coV(T™).

The reverse inclusion is an immediate consequence of Lemma 7. Hence

co V(T) = coV(T"™).
Now since ¢0 V(T) = V(#(X), T) it is clear that
V(#(X), T) = V(B(X™), T").

THEOREM 9. Let o/(A, I) be the weakly closed algebra generated by the identity I
and an invertible operator A acting on a uniformly convex Banach space. Then
A Ye (A, I) if and only if there exists an operator T in (A,I) such that
0écoV(TA).
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Proof. If A~! e (A, I) then the required operator T is the 4~ 1.
Conversely, suppose that there exists T e .o/(A, I) such that 0 ¢ co V(TA). First

we show that
Lat.o/(A,I) = LatA~!.

Let N e Lat o/(A, I). Then N e Lat T n Lat(AT). Since A is invertible, the subspace
A(N) is closed. From Lemma 2 we have that T A4 is full. Hence

N = TA(N) = AT(N) < A(N).

Therefore A" '(N) < N and so NeLat A~'. Thus Lat .o/(4,1) < Lat 4™ "

For any integer n the weakly closed algebra generated by A™ and I'” is
[Z(A, I)]™. Also, using Lemma 7, 0 ¢ co V(T A) implies that 0 ¢ V( T‘"’A‘"’) and thus
T™A™ is full for all n. Therefore

Lat [«/(4, )]™ < Lat(4~1)®

for all ne Z*. Hence by [9, Theorem 7.1], this implies that A~ ' € «/(A4, I) and the
proof is complete.

Note that the proof of Theorem 7.1 of [9] is given by the authors for Hilbert
spaces but it is not difficult to see that it is also valid for Banach spaces.

ReMARK. An operator T on a Hilbert space H is strictly positive if there exists a
real number & > 0 such that for all xe H, Re{Tx, x> = §||x||>. A. Feintuch [7]
proved that if 4 is an invertible operator on a Hilbert space then A ledl(A])if
and only if there exists an operator T € &/(A, I) such that T~ ! ¢ .o/ ( ,I1)and TA 1s
strictly positive. He also mentioned as a corollary the following: A~ " € Qé' (A, I)if and
only if there exists an invertible operator T such that T and T~ ' are in .«/(4, I) and
0 ¢ V(T A). But this in fact is obvious since 0 ¢ V(T A) implies that 0¢ V(T 1471,
and hence /(TA,I) = (T 1AL I) < (A, ) (see [5, Theorem 1]). Therefore
A '=T(T *A " YHYe Ad(A4,]I).

Now since the numerical range of an operator on a Hilbert space is always
convex and never contains zero when the operator is strictly positive, 1t follows that
Theorem 9 is stronger as well as being more general than Feintuch’s results.

THeOREM 10. Let A be an invertible operator on a uniformly convex Banach space
and let (A, I) be the weak closure of the algebra of polynomials in A. If o/(A, 1)
contains a quasinilpotent operator T such that 0¢ co V(T) then A™' € o(A, I).

Proof. Let N e Lat .o/(A, I). Since A is invertible, A(N) 1s closed. Suppose that
A(N) #+ N. We shall show that this leads to a contradiction. Let x € N\A(N). Define

L=cls{A"x:n >0}, M=cls{A""'x:n>0}.

Then L, M are invariant under A and so they belong to Lat «/(A, I). Consequently,
L MelatT But M « L and dim(L/M) = 1. Since T 1s a quasinilpotent operator
with 0 ¢ co V(T), Theorem 4 implies that this 1s a contradiction. Hence A(N) = N
and so Lat o/(A,I) € Lat A~ 1.
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We complete the proof by noting that the same argument applies to the algebra
[Z(A, )]™. Indeed, since by Lemma 7, 0 ¢ co V(T) implies that 0 ¢ V(T™) for all n
we have

Lat[«/(A4,)]™ < Lat(4A~ )™

and [9, Theorem 7.1] completes the proof.

3. Full operators

It is clear that a necessary condition for the inverse of an invertible operator 4 on
a Banach space to be in the weakly closed algebra 2/(A, I) generated by A and the
identity I, is that Lat 4 & Lat A~ '. This is equivalent to A being a full operator. It is
an open question whether this condition is also sufficient. From {9, Theorem 7.1]
A l'eot(A,I) if and only if LatA®™ < Lat(4~!)® for all n. Equivalently
A le (A, ] if and only if A™ is full for all n.

Let o7/(A) be the weakly closed algebra generated by A (and not by A and the
identity I), in other words .o#/(A4) is the weak closure of the algebra of polynomials in
A without constant terms. In the sequel we give conditions on 2/(A) each of which is
necessary and sufficient for the operator A™ to be full for all n.

ProrosITION 11.  Let A be a bounded operator on a Banach space X and let o/(A)

be the weakly closed algebra generated by A. Then A™ is full for every positive integer
nif and only if I € o/(A).

Proof. If I € o/(A) then obviously A™ is full for all ne Z™. For the converse,
suppose that A™ is full for every n. Let {x,, x,, ..., X} be any vectors in X and

U ={Be#(X):|Bx;—x|| <efori=1,2,..,k}

be any basic strong neighbourhood of the identity I. We have to show that o/(A)
contains an operator in U,.

Let M be the smallest invariant subspace of /(4A%) containing the vector
X; D x, @ ... ® x;. Consider the set

N={Tx, @Tx,®.. 0 Tx,: Te A(A)}

and let L=cls{x,®x,®..d x,N}. Then since M eLat(4A¥) and
X, ®x, ®D... ®x, e M we have N & M. Also Le Lat #(A%) and L contains the
vector x, ® x, ®...® x,. Hence L = M. Moreover it is easy to see that
A®(L) = N. But A® is full, hence

M = ABW(M) = AM(L) = N,

which implies that M = N, and so x, ® x, ® ... ® x, € N. Hence there exists
T € s/(A) such that

“(Txl @ sz @ .o (_B Txk)_(xl @ xz @ vou (‘B xk)“ < E.

This implies that T € U,. Therefore I € o/(A).
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Let X be a uniformly convex Banach space, let X' be the direct sum of n copies
n 1/p
of X with norm l|x|| = (Z ||xi||f’) 1l <p<oo,x;€X,i=1,2,..,n,and let 4
i=1

be a bounded operator on X . The subsequent results include necessary and sufficient
conditions on .2/(A) such that A"™ be full for all ».

PRrROPOSITION 12. Let A be a bounded operator on a uniformly convex Banach
space and let o/(A) be the weakly closed algebra generated by A. Then A™ is full for
every n if and only if there exists an operator T € o(A) such that 0 ¢ co V(T).

Proof. If A™ is full for all n then, by Proposition 11, this is equivalent to
I € &/(A). Hence in this case take T = I.

Conversely, suppose that there exists T € &/(A) such that O¢co V(T). Then
Lemma 7 implies that 0 ¢ V(T™) for all n and thus by Lemma 2, T® is full for all n.
Hence I € (T) S «/(A) and therefore A™ is full for every ne Z™.

CoROLLARY 13. Let A be an invertible operator on a uniformly convex Banach
space. Then A™ is full for all n if and only if there exists T € o/(A) such that
O¢gcoV(TA).

Proof. If A™ is full for all n then I € o/(A) and
Lat[o/(A)]™ = Lat[«/(A4,1)]™ < Lat(A~ )™  for all n.

Hence by [9, Theorem 7.1], A~ ! € &/(A) and so T = A~! satisfies the conditions.
Conversely, if there exists T € «/(A4) such that 0 ¢ co V(T A) then T™A™ is full for all
n and hence I € /(T A) & Z(A). Therefore A™ is full for everyne Z*.

CoROLLARY 14. Let A be an invertible operator on a uniformly convex Banach
space. The following are equivalent.

(i) A~ e A(A).
(1) There exists T € 2/(A) such that 0 ¢ co V(T).

(i) There exists T € /(A) such that 0 ¢ co V(TA).

Proof. This uses the equivalence of the statements 4~ € o/(A4) and A" is full
forallneZ”.
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