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Abstract

In this paper we extent some results concerning the minimal poly-
nomial of an algebraic operator from the finite dimentional case to
infinite dimentions and characterize the degree of an algebraic opera-
tor. We also give some applications to linear control systems.
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1 Preliminaries and Notation

Let X be a finite-dimensional vector space. All operators on X are algebraic
in the sense that to each operator A on X there exists a non-zero polynomial
p such that p(A) = 0. Moreover, if the dimension of X is n, then the degree
of p does not exceed n. (This is‘a consequence of the Cayley-Hamilton’s
theorem). In fact the minimal polynomial of A is the polynomial, among
the annihilating polynomials of A, with the smallest degree. The degree ot
the minimal polynomial of A is called the degree of A and is denoted by
deg(A). Also, by deg(p), we denote the degree of the polynomial p.

In infinite-dimensional spaces there are many operators which are not
algebraic. But in this case the algebraic operators can be characterized in
terms of their finite dimensional invariant subspaces (see [4]). Taking advan-
tage of the fact that an algebraic operator A has finite dimensional invariant
subspaces we characterize the degree of A, having in mind [2]. This is a
generalisation from finite to infinite dimensional case. Finally we give appli-
cations defining finite dimensional controllable linear control systems by the

operator A.

2 The minimal polynomial

L

Let X be a vector space and B(X) the set of all bounded linear operators on

X.
i
Definition 1 An operator A € B(X) is called
1. algebraic if there exists a non trivial polynomial p such that p(A) = 0.
2. locally algebraic if for every r € X there ezists a non trivial polynomial

p such that p(A)z = 0. |

3. algebraic of degree n if there exists a polynomial p of degree n such

that p(A) = 0 and for any polynomial g # 0 of degree < n —1, q(A) # 0.
Such a monic polynomial p is unique and is called minimal polynomial

of A. We denote it by pa.

The uniqueness of the minimal polynomial of A4 is easy to prove. Indeed,
if p;, p, are two monic polynomials of the same degree n such that p(A) =
py(A) = 0 then (p; — p2)(A) = 0 and deg(py — p2) < n —1 < n. Hence

P1 = Pa2.
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Definition 2 Let z be a vector in X. A polynomial p is called an annihi-

lating polynomial of z with respect to A € B(X) if p(A)z =0. Ifpisa
monic polynomial of minimal degree then it is called minimal polynomial

of z with respect to A and will be denoted by p;.
An operator A € B(X) is called boundedly locally algebraic if it is

locally algebraic and the degree of the polynomials p, is bounded independently
of x.

Remark 1 It is well known that boundedly locally algebraic operators are

also algebraic. ( see [1}).
Moreover A € B(X) is algebraic if and only if the union of all finite

dimentional invariant subspaces of A equals to X. (see [4]).
Also every operator B € B(X) similar to an algebraic operator A of degree
n is also algebraic of the same degree n. (B = P~ AP where P, P~' € B(X)

and so p(B) = P~'p(A)P for any polynomial p)

Lemma 1 Any annihilating polynomial of an algebraic operator A € B(X)
15 divisible by its minimal polynomial p4.

Proof. Let p be any polynomial, such that p(A) = 0. Then there exists
polynomials ¢ and r such that p = pa - ¢ + r, where deg(r) < deg(pa) and
p(A) = ps(A)q(A) + r(A). Hence r(A) = 0 and theretore r = 0.

Lemma 2 The minimal polynomial p, of any vector x € X with respect to
A devides the minimal polynomial py of A.

Proof. We have py = q - p; +r, where deg(r) < deg(p;). Then ps(A)
g(A) - pz(A) + r(A) = r(A) = —q(A) - p=(A), from which we get r(A)z
~q(A)pz(A)z = 0 and hence r = 0.

Proposition 1 If X is a Banach space and A € B(X) is an algebraic oper-
ator, then there exists a vector x € X such that its minimal polynomial p,
with respect to A coincides with the minimal polynomial py of A.

Proof. It 1s well known that any ideal J in the ring P of polynomials of one
variable is generated by a polynomial of minimal degree. Let z € X and the

1deal
I.={peP:p(A)z =0}
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The ideal I, is generated by a monic polynomial p, of minimal degree which
is the minimal polynomial of z with respect to A. If p4 1s the minimal
polynomial of A then ps € I, and, by Lemma 2, p4 is divisible by p,.
Therefore, considering all z in X, we get only a finite number of polynomials
Dz, s Pzoy -y Py, Since each pr,, ¢t =1,..., k devides p4. Defining by

X;={z€X:p,(A)z=0}, i =1,2,....k

then X = UX; and consequently, in a similar way as in Theorem 4.8, [4],
we have X = X; for some j € {1,2,...,k}. Therefore, p,.(A)X = 0 and, by
Lemma 1, it is implied that p;, 1s divisible by p4. Hence, p4 = p.,.

Corollary 1 For an algebraic operator A on a Banach space X the degree of
A isn if and only if for a certain vector z € X the vectors z, Az,..., A" 'z are
linearly tndependent while the vectors z, Az, ..., A"z are linearly dependent.

The vector z € X, in the above Corollary, is the vector for which we have
Pz = PA.

In the sequel X will be a Hilbert space. The next Proposition character-
izes the first n coordinates, with respect to a suitable base, of any vector of

X, where n i1s the degree of A.

Proposition 2 Let A be an algebraic operator on a Hilbert space X with
deg(A) = n. Then we can choose a basis {e;} of X such that for any vector
z = (1, Tg,..., Tpn,...) € X there exist n x 1 matrices P, Q) (where () depends
on z) and n x n matriz B, for which we have zy = QT B*'P, k=1,2,...,n.

Proof. If the degreec of A is n then there exists a vector y such that ps = p,
and the vectors y, Avy,..., A" 'y are linearly independent. Denoting the linear

span of the vectors y, Ay, ..., A" !y by
M = span{y, Ay,...,A" 'y},

we have that M is an invariant subspace of A with dimM = n. Taking an
orthonormal basis {m;} of M and extending it to be an othonormal basis
{e;} of X, the restriction Ay, of A to M, corresponds with respect to the
basis {m;} to an n x n matrix B. Let (y1, y2,...) be the coordinates of y
with respect to the base {e;} and P = (y1, ¥2,...,yn)'. Then, the matrix
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C formed by the columns P, BP,...,B" ' P, is invertible. So, for any vector
z = (z1, T2,.--,Zn, 0,...) € M C X, setting QT = (zi1, T2y .., ,)C7!, we
obtain z = (QTP, Q"BP,...,Q"B*'P, 0,...). : [

Definition 3 Let A be an algebraic operator, M be an invariant subspace of

A of finite dimension and B the corresponding matriz of the operator A|y
with respect to an orthonormal base of M. We say that the subspace M has

the property (d,) if dimM = n and for every z = (z1,%2,...25,0,...) € M
there exist n x 1 matrices P,Q such that z, = Q" B*"'P, k=1,2,...,n.

Proposition 3 Let A be an algebaraic operator on a Hilbert space X and M
an invariant subspace of A with the property (d,). Then deg(A) = n.

Proof. Let {ei,e,...,en} be an orthonormal basis of M. To each vector
e; corresponds, by hypothesis, n x 1 matrices P;,Q;, ¢ = 1,2,...,n. Since
€1, €2, ..., €y are linearly independent the matrix

RQiP ... QB"'H
(i o= | - E
QlP, .. Q,B"'P,

is invertible. Therefore the matrices I, B, ..., B*~! are linearly independent,
otherwise the columns of C' would be linearly dependent. Hence, deg(B) =

deg(A|ar) = n and therefore deg(A) > n.

Remark 2 It is implicit in the proof of Proposifion 2 that the subspace
span{y, Ay, ..., A" 'y} has the property (d,), where n = deg(A). Therefore
a consequence of Proposition 3 is the following:

Corollary 2 We have
deg(A) = max{n : n = dimM, M has the property (d.)}.

Remark 3 An applica,ti'on to system theory can be obtained by the factor-
ization of the matrix C, which is defined in the proof of Proposition 3, as

follows.
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We have

QP .. Q{B" P .
: . = diag(@, @2, ---, Qn)TC(R, I, ® B),

C = : .
@R .. Q. .H"'R
Py
- P
where C(R,I, ® B) = [R,(I. ® B)R,...,(I, ® B)*'R], and R = :2
Py

Therefore for the linear control system
z2(t) = (I, ® B)z(t) + Ru(t),
by the equality rankC = rankC(R,I, ® B) =n, we get the following

Proposition 4 Let A be an algebraic operator, M be an invariant subspace
of A with the property d, and B the corresponding matriz of the operator
Alyp with respect to an orthonormal basis of M. Then it is constructed the

controllable system

C P
. P
zZ()= (I, @ B)z({)+ Ru(t) ; R=| . |,
L P
where the matrices P;, i = 1,...,n correspond to the orthonormal basis and

u(t) s the control function.

Note that, when degA = n, the matrix B is non-derogatory and P, = P, =
... = P, = P, where P is the matrix defined in the proof of Proposition 2.

Hence by C = diag(Q1, @2, ..., @») ' (I.QC(P, B)) we have the next simplified

form of the corresponding controllable system
z(t) = Bz(t) + Pu(t).

In this special case using Theorem 1, [3] it is implied that the minimal
polynomial of B and that of P coincide.
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