Reprinted from JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS Vol. 142, No. 1, August 15, 1989
All Rights Reserved by Academic Press, New York and London Printed in Belgium

The Module Factorization of Operators on Hilbert Space

SOTIRIOS KARANASIOS

Department of Mathematics,
National Technical University, Athens GR-157 73, Greece

Submitted by Ky Fan
Received December 31, 1987

1. INTRODUCTION

It 1s known that solutions of certain operator equations are closely
related to the problem of factoring an operator with respect to a nest & of
projections in a Hilbert space H [3]. A representation 4 = ST is a fac-
torization of A with respect to the nest & if .S leaves invariant each member
of & and T leaves invariant the orthogonal complement of each member
of & [1]. In infinite dimensions factorizations of this type were first
considered by Gohberg and Krein [4]. In this paper we generalize such
factorizations of 4 by introducing the notion of regularity relative to a nest
algebra module % and then use it to classify them. Moreover we give a
necessary and sufficient condition, when A4 is a positive operator, to have
a factorization of the form A4 =S*S where Se# and S~ 'e(#1)*. This
generalizes the main result in [3]. The exposition and structure of this
paper follows closely those in [1, 3].

Standard terminology and notation will be used throughout this paper
(see, for example, [2]). The terms Hilbert space, operator, and projection
will mean complex Hilbert space, bounded linear operator, and
otrthogonal projection, respectively. Alg & denotes the corresponding nest
algebra to the nest &. If E— E is a left continuous order homomorphism
of & let % ={XeB(H): XE=EXE for all E€c&}. % is an Alg & module
and the set %+ = {XeB(H): EX=EXE for all E€ &} is then an Alg &+
module. By 4* we mean the adjoint of the operator 4 and #* =
{A*¥: Ae}.

2. CLASSIFICATION OF MODULE FACTORIZATIONS

In this section we consider factorizations of an operator 4 on the Hilbert
space H of the form A=ST where Se%, S 'e(%+)* and Te%,

T 'eq*. First we show
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PROPOSITION 1. Let & be a complete nest of projections and U an Alg &
module. Suppose that there exists an invertible operator T such that T and
T ! belong to U. Then the order homomorphism E — E which determines U
is such that EXE for every E€é&.

Proof. Since
E=T 'TE=T ‘ETE=ET 'ETE=ET 'TE=EE,

it follows that £ > E for all Ee & which implies that £ > E for every E€é&.

A consequence of the above Proposition 1 is that if S is an invertible
operator such that Se#* and S~ 'e %" then E= E for every Ee &. This
shows that we cannot generalize the notion of the regular factorization of
an operator (see [1]) relative to the pair of modules %, % - because then
the homomorphism E — E becomes the identity and % = Alg & But it is
possible to have such a generalization when we use the modules % and
(%*)*. The following example [5] justifies this.

ExaMpPLE. Let H be the Hilbert space L,{0, 1] and & the nest

{E,: te [0, 1], where E, is the projection on the subspace L, [0, t]}.

Consider a function ¢:[0,1]— [0, 1] which 1s onto and differentiable
with $<¢'<2. Then there exists the inverse ¢ ' of ¢ and satisfies
;< (@ ~') <2. The correspondence E, - E,, is an order homomorphism
from & into itself. This homomorphism determines an Alg & module %.
Define the operator

A:L,[0,1]>L,[0, 1], Af=fop™"

It 1s easy to see that 4 is bounded and invertible. Moreover 4 e,
A Ye(UH)*, U+AlgE, U+ (U+)*, and A¢Alg &

DEFINITION 2. A representation

A=ST (1)

1s called a regular factorization of A with respect to the module % if S and
T are invertible and Se%, S 'e(#*1)*, Te#*, and T 'e#*. The
representation (1) 1s called a leftr regular factorization of 4 with respect to
the module % if S is invertible, Se %, S~ 'e(#~)*, and Te¥*. A right
regular factorization is defined similarly.
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In the following lemma we prove that a regular factorization is unique
up to a multiplicative factor from the algebra Alg & n Alg &~.

LEMMA 3. If A=8,T, and A=S5,T, are two regular factorizations of
A with respect to the module 9 then there exists an operator D in

Alg & N Alg &+ such that S, =S,D and T,=DT,.
PI‘OOf. LetA=S1T1=SzT2.Then
S5 Sy =TxT7% (2)

Since the factorizations are regular we have

i) S;'S,E=S;'ES,E=ES;'ES,E=ES;'S,E for every Ecé&
and so S, 'S, eAlgé.

(ii) ETzT ! = ET,ET{'=ET,ET '‘E=ET,T{'E for every Ecé&
and so T, T eAlgc?J"

Therefore from (2) and (i), (ii) we have that S;'S;, 7,7 ! belong to
Alg & N Alg £+ and hence there exists an operator D e Alg & m Alg &+ such
that S; 'S, =T,T; ! =D, and the proof is completed.

In the sequel we examine when a left regular factorization is regular.

LEMMA 4. Suppose T is an invertible operator in B(H). Then if Te U the
following are equivalent.

i) T le(wt)*

(i) (E—F)T(E—F) (E—~F#0, E>F) is invertible for all E, Fe &.
(iii) ETE (E #0) is invertible for all E€ &.
(iv) (I—E)T(I—E) (E, E#]I) is invertible for all E€ &.

L)

Proof. Suppose (i) holds. Then for E, Fe&, E>F, E#F we have
E>F and since T7'E=ET'E, I-F)T '=(I-F)T '(I-F), and
(I—F)T=(I—F) T(I— F) we have

E-FTE-F(E-F)T YWE-F)=(E-F)T(E-F)T"Y(E-F)
=(I-F)ETEI-F) T '(I-F)E
=(I-F)TEI—-F)T'E
=(I-F)TT'E

=FE-F
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Similarly (E—F)T " YE—-F(E—F)T(E—F)=E—F and hence (ii)
follows. Clearly, since 0 =0, (ii) implies (iii), and we can easily prove that
(1) implies (iv). Suppose (iii) holds. Then

ETET ‘E=TET 'E=E  forevery Ee&, E#0
and
TTET‘E+(I—-E) T '(U—-E)+ ET '(I-E)]

=TET 'E+TU—-E)T '(I-E)+ TET"'(I—-E)

—TET ‘E+I1-E—TET '+ TET 'E+TET '-TET 'E=1
Therefore I

T-'=ET 'E+(I—-E)T '(I-E)+ET'(I-E)
and so
T-'E=ET'E forevery Eecé&, E#0.

But since the only projection E e & satisfying £=0 is the projection E=0
(TE=ETE=0TE=0 implies T-'TE=0 and hence E=0) we have
T-'E=ET 'E for all E€ & and hence T~ ! e (%~)*. Finally with the same
argument as above we prove that (iv) implies (1).

PROPOSITION 5. Suppose A= ST is a left regular factorization of A with
respect to the module 9. Then the following are equivalent:
(i) A=ST is regular.
(m) EA -1F (E, E#O) is invertible for every E€é.
Gii) (I—E) A(I—E) (E, E#1) is invertible for every E€&.

Proof. Let A=S8T be a regular factorization. Then Lemma 3 shows
that for every Ee &, E#0 the operators ET'E, ES~'E are invertible and

for every E€ &, E, E +# 1 the operators (/— E’ S(I—E), (I—E)T(I—E) are
also invertible. Therefore from

EA-'\E=ET-'S~'E=(ETE)ES'E)

and

(I—E)A(I-E)=(I—E)ST(I—E)
=(I—-E)S(U—E)T(I—E)
=(I— EyS(I-E)I-E)T(~-E)
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we have the invertibility of EA~'E and (1 -—E’)A(I — E). Suppose (ii)
holds. Then

(ETE)(EA'E)=ETA‘E=FEs—E

and since the operators E4 ~'E, ES—'E are invertible we have that ETE is
invertible, and so, from Lemma 3, 7! e *. Therefore the factorization is
regular. Similarly (iii) implies (i).

COROLLARY 6. If A=ST is a regular factorization with respect to
the module U the operators I—E+EA~'E and E‘+(I——E')A(I——E) are
invertible.

Prgof. Since from Proposition 4 the inverses of EA~'E and
(I—E) A(I—E) exist we can easily prove that the inverse of I— E +

EA~'E is the operator I — E+ EAEEnd the inverse of £ + (I — E) A(I— FE)
is the operator E+ (I— E)A~'(I-E).

3. THE MODULE FACTORIZATION OF POSITIVE OPERATORS

In this section we give a necessary and sufficient condition for a positive
operator A to have a factorization of the form A4 =S*S with Se#% and
S™'e(%*)*. This is a generalization of the main result in [3].

Let 4" be a nest of subspaces of the Hilbert space H, & = {Ey: Ne A"}
the corresponding nest of projections, and % an Alg & module determined
by the order homomorphism E, — E .

THEOREM 7. Let A be a positive operator on H. Then A= S*S with

SeU, S~ e(U+)* if and only if there exists a unitary operator U such that

Proof. Suppose that there exists a unitary operator U such that UE, =
EoyU. Let S=U*4'? and N be the range of E,. Then A= S*S
and S(N)=SEN(H)=U*A"’E\(H)=E,U*(H)=E\y(H)=N for every
Ne . Therefore, from S(N)=N, we have E,SEy=SE, and
ENyS 'Ey=S"'E, for every NeA. Hence Se# and S—'e (U+)*
Conversely, let 4=S*S with Se# and S~ 'e(#*)* It is proved in
[3, Corollary 3] that the orthogonal projection on AYV2E,(H) is
A (ENAE ) '4Y2 But

AYHENAEy) A" = AVX(E S*SEy) 14
= A [(ENS*Ey)ENSEN)] 1 AY2 (3)
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From the fact that S~ !'e(#1)*, Lemma3 shows that the operators
E,SE, and E,S*E, are invertible, and hence from (3) we have

AV(ENAEN) 'AV? = AP[(ENST'ENNENS* T'Ey)] A"
= A" PALENST'EN)(ENS*T'EyN)] AATT

= A" 2S*[(SENST'ENNENS*'ENS*)] SATYA
= A" V2S*[(SSE NENyS*1S*)S] A~ 1?

— 4-2S*E, 542,

Now if we put U=A"12S* then U is a unitary operator and we have
E .ny=UE, U* or equivalently UEy = E ;125 U.
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