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AN OPERATOR IN %

S. KARANASIOS

Abstract. In this paper we prove that every operator X in the symmetrically
normed ideal bw, X € B (H,,H,), can be decomposed as X = X; + X3, whe-
re X; belongs to a nest space Op ¢ with ¢ to be a suitable (joint-continuous,
zero preserving) map of sbspaces and X, belongs to a nest space Op o, wh-
ere ¢ is the “adjoint” of the co-map of ¢.

1. Introduction and notations.

In [3] we study the convergence of the module triangular integral on
symmetrically normed ideals and prove that given a continuous nest & every
operator in the symmetrically normed ideal ¢« is the sum of two operators;
one in the considered nest algebra module % and one in the complementary
module%{ In this paper we prove an analogous result, in a more general
case, in accordance with the subspace maps and the corresponding linear
spaces of operators. To be more specific we need the following definitions
and notation which is taken from [1].

Let H; H, be two Hilbert spaces and &, and &, the sets of closed
subspaces of H; and H. respectively. Let A4 (2, 2%,) be the set of all joint-
continuous, zero preserving maps from &, to &,. Then for any ¢ € A (&,
9,), define the co-map V: P, =P, of ¢ by W(P2) = v {P, € P o(P) S P} b
is order preserving, meet continuous and satisfies Y(I) = 1. The range S, of
o is clearly a joint-sub-semilattice of £, that is complete with respect to joi-
nts. Also 0 € %,. The range &, of ¢ is a meet-sub-semilattice of &, that is
complete with respect to meets. Also I €.%,. The semilattices &, and % will
be refered as the semilattices of ¢. To each map ¢ € A (¥, #,) there cor-
responds a set of operators, denoted by Op ¢, as follows

Op ¢ = (A EZ (H,H,): AP, < ¢(P)) for all P, € #,).

When one of &1 and ; is totally ordered then the corresponding set of ope-
rators Op ¢ is called nest space.
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Now the result we prove here is the following. Every operator X in 6w,
X € Z(H,,H;) can be decomposed as X = X; + X, where X; € Op ¢ and
X: € Op o and where ¢ is a map of subspaces so that the set Op ¢ is a ne-
st space and o is the “adjoint” (see [1]) of the co-map of ¢. I wish to thank
Dr. J.A. Erdos for bringing this problem to my attension and for all his val-
uable suggestions.

2. The main resulit.

Let H,,H: be two Hilbert spaces and H = H, @ H,. Consider a map ¢
c A (P, 2,)), its semilattices <, and -992 and the set & of operators in
# (H, @H,) of the form

(‘;‘ );) with A € Alg ¥, B € Alg¥; and X € Z (Hi,Ha).

Lemma 1. If Op ¢ is a nest space then & is a nest algebra.

Proof. Since Op ¢ is a nest space the semilattices ¥, and %, are both total-
ly ordered. Let -Z| and -%; be the completions of ¥, and % respectwely We
will prove that the nest of < is the set

={N@0:NEZL}U H, ®@M: MEZ).

Clearly ¢ is a complete lattice containing 0 and | and it is easy to see that
each member of 6¢ is in Lat . Suppose now that N ® M € Lat <. Then
the inclusion

)é) (N®M) & N ®M for every (g );) € A implies

that AN+XM S Nand BM S Mforany A € Lat¥,, B € Alg¥, and X €
% (H,,H,). This is equivalent to N € Lat Alg¥; and M = 0 or M € Lat Alg
% and N = H,. Therefore N ®M has one of the forms M @0 and H; @ N.
Now since the lattices _95’ \ and &, are reflexive we have N €.%;, and M € %..

Lemma 2. Let % = § ( )é) : X € Op ¢}. Then% is a weakly closed 2Z-
module.

Proof. It is enough to prove that AY, YB € Op ¢ for any AE Alg ¥, B €
Alg % and Y € Op ¢. But if P, €%, then
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(AY)P; - Ad)(Pl) - ¢(P1) and (YB)P] S YP & ¢ (Pl)

Hence from the definition of Op ¢ we have AY, YB € O, ¢.

It is known that for a given nest algebra mod._le 7 there exists a left
continuous order homorphism from the corresponding nest & into itself whi-
ch determines the module Z. In fact if £ — E, E € E is the order homomor-
phism then 7 = (X € Z (H): .| — E) XE = 0 for all E €&} (see [2] or [3]).
Also to this module 7 there corresponds the complementary moduleZ 1=
(XEZ H):EX(I—E5)=0forall EE&}

Lemma 3. The left continuous order homomorphism which determines % is
N@0—~(N®0) =0forany N €5,
H: @M — (H; @ M)~ = ¢(M) @O0 for any M €%,
Proof. Let M €.Z,. Then for any Y € Op ¢ we have
(0 Y
0 0

(H: M) =Y(M) @0.

Therefore, from the reflexivity of 6¢ and the definition of ¢ we have
(H: @M)” = VY M) @0 for every Y € Op ¢} = ¢ (M) ®O.

In the sequel we consider the complementary moduleZ lof . An order
homomorphism which determined% 1is the following

(N ®0)' - (H, ®H,) ©(N ®0)" = H, ®H,
(H: ®M)! - (H, ®H,) © (¢(M) @0) = ¢(M)* @ H.,.

We also consider the ideal ¥« of compact operators X which is defined in
terms of the eigenvalues of (X*X)% (see [3], p. 308). Identifying the subspa-
ces of ¢ with the orthogonal projections on them we denote the order ho-
momorphism which determines the module Z by E - E,E€8¢p and E- =V
{F €6¢: F <E} whenE # 0 and 0" = 0. Now we state and prove the main
result of this paper.

Theorem 4. Let X € %w, X € Z (H,,H,) and ¢ be a subspace map. Then
X can be decomposed as X = X, + X; where X; €EOp ¢ and X € Op o
where o is the adjoint of the co-map of ¢. -

Proof. Suppose X € Gw, X € 4 (H,,H,) and hence
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(g T)) € % (H, ®H,). Then from Theorem 24, [3] we have

b A=l Bl

where 0

U 1
O)E and(0 )E%

Therefore X, € Op ¢ and what remains to be proved is to identify the mo-
dule % 1with the Op o where o is defined as o(M) = ¢*(M) = [®#(M")]' with
¥ to be the co-map of ¢. Thus Op o = (Op ¥)*. Let

7 = Zu Z”) . Then Z €% !if and only if EZ (I — E) =
221 222

for every E € 6¢. Matricially this is equivalent to

0 0
0 Im

I¢(M) 0 (211 212)
0 0/ \Za 22
A simple calculation shows that this is equivalent to Iq,(m Z12IM! = O for every
M € .4 and Z:,, Z22, Z2 arbitraries. Hence Z::ImM! & d(M)' for every M &

%,. Therefore if o = ®* then Z;; € Op o and hence X, € Op o. This co-
mpletes the proof.

= ( for every M € 2.
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