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. | 1. Introduction

Fall, Arveson and Muhly(4) characterized the compact perturbation of nest algebras.
In fact they proved that the compact perturbation of a nest algebra corresponding to
a nest of projections is the algebra of operators which are quasitriangular relative to
this nest. Erdos and Power (3) investigated weakly closed ideals and modules of nest
algebras and these exhibit properties that are very close to the properties of the nest
algebras themselves. They also showed that in certain cases, as in the case when the
homomorphism which determines the nest algebra module is continuous, the results
of Fall, Arveson and Muhly carry over to the more general situation. In this paper we
provide a characterization of the compact perturbation of any nest algebra module.

The terms Hilbert space and projection will be used in this paper to mean separable
complex Hilbert space and orthogonal projection. The set of all bounded linear
operators from a Hilbert space H to a Hilbert space K will be denoted by #(H, K).
When H = K this set is simply denoted by #(H). By a module we mean a two-sided
module. For a nest & of projections the corresponding nest algebra is denoted by
Alg #. By X we denote the compact operators on H. ' |

2. Compact perturbations of a nest algebra module

Let & and & be two order isomorphic nests acting on Hilbert spaces H and K
respectively and let ¢ be the implementing isomorphism ¢: & ->%. The upper tri-
angular operators with respect to the ordered pair {#, %} (which in general do not
form an algebra) are

_ _ Jy(&,F)={Xe#H,K): (I-¢(E))XE =0, Eed}.
It is proved in (5) that . | |
- d(X, J¢(€ #)) = sup |- ¢(E) XE|, XeZ(H,K). (1)
Here d (,) deno’ees the distance induced by the operator norm. It is mentioned in (3)
that this result is also true when ¢ is an order homomorphism from & nest into itself.

Since this is not obvious and the proof is not published and since we use it to prove our
main result, we shall give a proof of that for the convemence of the reader.

LEMMA 1. Let & be a nest of projections on a Hilbert space H and let X e #(H). If
¢: &->& 18 an order homomorphism from & into melf and (€, ) = Xe®H):
(I— ¢(E))XE 0, Ec&} then

-d(X, A(F,P) = sup I[¥4 —¢(E))XE' [ (2)
(Note that (8, ) is an Alg &-module.)
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Proof. We shall prove (2) first for any finite subnest of £&. Let &, = {&,, K,, ..., E,}
be any finite subnest of & and let & = {F,, F,, ..., F}}, k < n, be the set of distinct
images of the members of &, under ¢. Put ¥ = {G, €€, 1 <j <k, where G, is the
largest projection in &, such that ¢(G,) = F;}.

Then ¢ restricted to & is an order isomorphism from ¥ onto & . It is easy to see that

the Alg &,-module o/(&,, ¢) is equal to the set J,(¥, &) of upper triangular operators
corresponding to the ordered pair {#, #}. Indeed, the inclusion &(&,, §) = Jy(¥, F)
is obvious. Let T'e Jy(¥,F) and an Eed,. Let G; be the projection in & such that
¢(E) = ¢(G4) = F;. From (I-F;)TG; = 0, since ¥ < G; we have (I -¢(¥))TE = 0.
This implies that T € s/(¢£,, ¢) and hence &/(&,, §) 2 Jy4(¥, F). Therefore
| d(gli ¢) = Jg)(gs F)
as required. |
Let X e #(H). Then, by (1), we have

d(X, (8, 9)) = d(X, (9, F)) = max (I - F) XG,.
1<k

But for any F € &, there exists a G, ¥ such that £ < G, and ¢(E) = ¢(G,). Hence
I~ ¢(E)) XE|| = ||(I - $(E)) XG, E| < ||[(I-F))XG,|.

d(X,H(&,,9)) = féagnll(l ¢ (E;)) X E,|.

Now the proof proceeds in the same way as in (1) and it is omitted.

Definition 2. Let A&, ¢) = {XecB(H):(I-¢$(E))XE =0 for all Ec&} be the
Alg &-module determined by the homomorphism ¢: &> &. Define Qu/(&, ¢) to be
the set of all X in #(H) such that:

(i) (I—¢(E)) XEeX forevery Ecé.

(ii) The set {(I — (X)) XE, E €&} is precompact in the norm topology.

The members of Q&7 (£, @) are called the quasitriangular 0pera.tors with respect to
the Alg &-module &/(&, ¢).

THEOREM 3. If (8, @) i3 a nest algebra module detemined by the homomorphism ¢
then

Therefore

QA (8, 9) = (&, 9)+X.

Proof. We first prove that Qof (&£, §) < A (&, ¢) + X. The proof of this proceeds in a
fashion analogous to that found in (4). Let X € Q/(&, ¢) and choose ¢ > 0. We shall
construct a compact operator K such that the distance from X — K to &/(&, ¢) is at
‘most €. From theorem 1-1 of (4¢) and corollary 1-6 of (3), &/(&, @) + X is normed closed.
Hence since ¢ is arbitrary X will belong to #(&,¢9)+ X and hence Q¥ (4, ¢) -
A&, )+ X,

The set {({ - ¢(E)) XE, K eé"} is precompact and 8o it contains an e-net

{T- ¢(Ej)) XE;:0<j<n}
Hence for every Fe 6 there exists j such that 0 < j < » and

I - $(E) XE— (I - J(E) XE,| <e.
Obviously we can assume that 0 = K, < E; < ... < E, = I.Put
F,=E-E,, 0<j<n,
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and define

K = ,?al (I ¢(Ej)) XI}

From condition (i) of definition 2 we have
(I-(E,)) XP; = (I - (&) XE,F,eX foreveryj:0<j<n,

and 80 K is a compact operator. |
By Lemma 1, for any T EQ(H), d(T,sH(€,P)) = gla.x (I — ¢(E)) TE|; therefore

to prove d(X - K, (8, ¢)) £ ¢ it will be enough to prove that
(I-d(E)(X-K)E|| < ¢ forevery Ecé.
Fix Ee€é&. Then thereis j: 0 < j < nsothat E; ; < F < E,. We have

X-K= 3 XP— 3 (I-$(E) XP,

k=1 k=1

- 3 ¢(B,) XP,

Jom1
and therefore

(I-$(E))(X~K)E = E (- $(E)) $(E) XR,E.

- Nowfork > j, PkE 0 and for k < j, since E’k < E implies ¢(E,) < ¢(E), we have
(I - @(E)) ¢(Ey) = 0. Hence --

(I - $(E)) (X—K)E = (I-¢(E)) ¢(&;) XF,E

= $(E,) (I - $(E)) XEF,
Choose k, 0 < k < n, such that

(I —(E) XE —(I—-¢(E,)) XE] <e
Then

I(I — ¢(E)) (X — K) K|
= ||p(Ey) (I — $(B)) XEF)|
< ||¢(By) (I - $(E)) XEF,— $(E)) (I — §(E)) X E, Fy|| + ip(Hy) (I — (Ey)) B
< e+ IB(E) (I - $(By) XE, B
But K, P, = 0 for k < j and for k > j, since E, > K, implies
HEy) > (Ey), $(E;) (T —P(Ey)) = 0.

(&) (I — $(Ey)) XE Byl = 0 and thus  [|(Z- (&) (X - K) K| <

For the reverse inclusion (&, ¢)+X < Qd(d’ @), let XeA (S8, ¢)+J(f' Then
X = A+ K where Ac(£,¢) and Ke X and for any Eed

(I-¢(E) XE = (I-H(E)AE+(I-$(E) KE = (I - ¢(E))KEE-7"

Therefore X satisfies the first condition of the definition 2. To prove that X also
satisfies condition (ii) it is sufficient to prove that the set S = {(/ - ¢(F) KE: Ecf} is
sequentially compact for any fixed compact operator K. |

Hence
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To show this, let {(I —¢(E,)) KE,}¥ be a sequence in S. We shall prove that this
sequence has a convergent subsequence. Since & is a nest the sequence {E,}* of
projections in & contains either an increasing subsequence or a decreasing subsequence.
Suppose that {£,}7 has an increasing subsequence. For the other case we work
similarly. For convenience let {E,}) be the increasing subsequence. Then, since
E, < E,, implies ¢(E,) < ¢(E,,), the sequence {¢(E,)}® is also increasing. Then by
‘corollary 2 of (2), they converge in the strong operator topology. Let F and F be
their limits respectively. Since K is a compact operator, {KE, )} converges to KE in
norm-and {(I - ¢(E,)) KE} converges to (I — F) KE in norm. Therefore

|(I - $(E,)) KB, ~ (I- F)KE)| _
(I-$(8,)) KB, ~(I- $(E,)) KE + (I - §(E,)) KE — (I - F) KE|
(I -$(E,)) (KE,~ KE)| +|(I - $(E,)) KE— (I - F)KE|
|KE,~ KE| + (I - $(E,)) KE— (I - F) KE||,

which implies that {(I — ¢(E,)) KE o} converges to (I — F) KE in norm, Hence § is
sequentially compact and the proof is complete.
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