Triangular Integration with Respect
to a Nest Algebra Module

SOTIRIOS KARANASIOS

1. Introduction. The concept of the triangular integral of an operator on Hil-
bert space with respect to a complete nest was introduced by Brodskii [3] and in
short time it was developed considerably [4], [S], [7]. Erdos and Longstaff in [5]
studied the triangular integral with respect to a fixed nest and gave many appli-
cations of it. Erdos in [4] continues the study of the triangular integral by giving
new proofs of some fundamental convergence theorems in this theory. In this
paper we introduce the notion of the triangular integral with respect to a nest
algebra-module and characterize the set of operators for which this integral is
convergent. We also study the convergence of this integral on symmetrically-
normed ideals and prove that, when the given nest € is continuous, every operator
in the symmetrically-normed ideal €, is the sum of two operators; one in the
considered nest algebra-module #4(€,~) and one in the complementary module
A(€*,~). This paper owes much to the papers of Erdos and Longstaff [5] and
Erdos {4].

2. Notation and preliminaries. Standard terminology and notation will be
used (see, for example [5], [6]). The terms Hilbert space, subspace and operator
will be used to mean complex Hilbert space, closed subspace and bounded linear
operator on a Hilbert space respectively. The set of all operators on a Hilbert
space H will be denoted by B(H). A set € of orthogonal projections is called a
nest of projections if it is totally ordered by the usual ordering of operators. If a
nest € contains O and / and is complete as a lattice then € is said to be a complete
nest. For any member E of a complete nest €, define

E-=\/{F€¥:F<E} when E # 0, and
E*=/\{FE¥:F>E}, whenE #1.

By convention 0" = O and /™ = I. If E = E~ then € is called a continuous nest.
Also if E — E is an order homomorphism of ¢ into itself (that is £ < F implies
E = F), define

Ey, = /\ {F:F > E} (for the notation cf. [6]).

The set of all operators which leave invariant the range of each member of a nest
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€ is called the nest algebra of € and is denoted by Alg €. The terms module and
ideal will be used to mean two-sided module and two-sided ideal. The rank one
operator x — (x,e)f will be denoted by e Q f.

Let € be a complete nest of projections. A partition P of € is a finite subset
[E;:1 =i =<n}of €suchthat 0 = E;, < E, < ... < E, = I. The projection
E,— E,_, will be denoted by AE;. A partition E’P, is a refinement of P if P C
%,. By the union of the partitions P, and P, of € we shall mean the partition
P, U P, consisting of all points which belong to at least one of the partitions
P, P,. Clearly #, C P, U P,, P, C P, U P,. The partitions of € form a
directed set under refinement. We recall, from [5], the definition of integration
with respect to a nest €. Let f be any function on € taking values in ®R(H). For
a partition P of € let F» = {F;:1 < i < n} be a subset of 6 such that £, , =
F.<E,i=1,2,..., n. Let

W(f,P,Fp) = Z f(F) AE..

We say that an operator X is the integral of f with respect to the nest ¢ and we
write

€

if, for arbitrary choice of ¥, U (f,P,F») converges in the norm topology of
R (H) under refinement of &, to the operator X.

3. The integration with respect to a nest algebra-module. In this section
we give the definition of the triangular integral with respect to a nest algebra-
module.

Let € be a complete nest of projections on a Hilbert space H, s = Alg ¢ be
the corresponding nest algebra and U be a weakly closed d-submodule of RH)
under operator multiplication. Let E be the projection onto the closed linear span
of {range(XE):X € AU}. Since U is a module, E is invariant under s and so, by
the reflexivity of complete nests, E € €. Obviously ¢:E — E is an order homo-
morphism from % into itself with 0 = 0 and moreover ¢ is left order continuous
in the sense that

lim £ = [lim E] = F~ (see [6]).
ETF ETF

If we put
A@E,~)={X ERH):(I — E)YXE = 0forall E € €}

then #(%,~) is also an #-module and it is proved in [6] Theorem 1.5 that
A(€,~) = AU. This means that every weakly closed nest algebra module is always
determined by a left order continuous homorphism ¢ with $(0) = 0. It is shown
in [1] that this determination is unique. Therefore there 1s a one-to-one corre-
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spondence between weakly closed modules and left order continuous homomor-
phisms satisfying ¢(0) = O.
In the sequel we shall always assume that every weakly closed module is de-

termined by a left order continuous homomorphism E — E with 0 = 0 and we
shall denote the given module by A(¢,~).

Definition 1. Let f be a function on ¢ taking values in B(H) and U =
A(€,~) be a weakly closed nest algebra module determined by the left order
continuous homomorphism ¢ : E — E with ¢(0) = 0. Consider the function g =
fed on € which is the composition of ¢ and f.

The module triangular integral of f is defined to be the triangular integral of
g with respect to the nest € and is denoted by

f(E)YdE = f g(E)dE.
€

(€,~)

For a fixed operator A € B(H) let f(E) = EA. Then g(E) = f(b(E)) = EA and
the module triangular integral of f in that case is called the module triangular
integral of A or the triangular integral of A with respect to the nest algebra module
A(€,~) and is denoted by T (A).

If » = {E;:1 =< i < n} is any partition of €, AE, = E;, — E;,_, and F =
{F:l<i=<n}isasubsetof € suchthatE,_, < F, <E,,i= 1,2, ..., nthen

T (A) = lim Z F.AME;.

=1

When we choose F3 tobe {E;_;:1 < i < n}and {E;:1 < i < n} respectively then
we denote the corresponding integrals

2(4) = (m) f EAdE =lim ), E,_,AAE,
€ -

WUA) = (M) f EAdE = lim ) E,AAE;.
¥ =1

€

Similarly

B(A) = J dEAdE = llmz AE,AAE;.
€

i=1

For a partition P of € we shall write Q@ (A), % (A) and Q}Jg.(A) for the sums
D, E_,AAE,, ) E,AAE, and ) AE,AAE,

respectively.

Remark. Since every order homomorphism ¢ of € into € defines a weakly
closed Alg €-module, namely
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AE,0) ={X € B(H):(I — $(E))XE = Oforall E € €}

we can define a “module triangular integral” associated with the homomorphism
¢, in the same way as above. Then we can consider the module #(¢,) and
prove similar results as in the case of a left order continuous homomorphism ¢

satisfying ¢(0) = 0.

4. The convergence of the module triangular integral. In this section we
characterize those operators for which the module triangular integral exists. We
shall use for this the same techniques as in [5]. In [S] the main tool was the radical
of the corresponding nest algebra as it was characterized by Ringrose [9]. In our
case we shall define a subset of the nest algebra-module analogous to Ringrose’s
radical which will play the same role as the radical in [3].

Definition 2. We define the set R(€,~) to be the subset of 4 (€,~) such that,
given € > 0, there exists a partition P of € with the property

IAE,XAE,| < ¢
forl =i < n.

Lemma 3. We have the following:
(i) The set R(€,~) is norm closed.
(ii) R(E,~) = {R € A(E,~): DR) = 0}.

Proof. (i): Let {R,}; be a sequence in R (€,~) which converges to the op-
erator R in norm. Then given € > 0O there exists an integer N(g) such that

.
IRy — R|| < . for every N > N(e).
Take one such N. Then since Ry € R (€,~), there exists a partition
- €
op ={E;} of € with ”AEIRNAEI” <E, [ = ]., 2, N (1

Therefore
IAE,RAE,|| < |AE,(R — Ry)AE,|| + |AE,Ry AE||

€
<”R_RN”+E<8 fori=1,2,...,n

and hence R € R (€,~). Equivalently R (€,~) is norm closed.
(ii): For any partition P = {E;} of € and any x # 0, x € H, we have

2

[Bs R)x|P = || D, AERAEx| = > [AERAE x|’
i=1 i=1

< > (JAE.RAE,|P|AEx|*) = [max ||AE,RAE;|1*] x|
i=1

1<si=n
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and hence

(1) | < max||AE,RAE,||.
1=<i=n
Also for any j:1 = j < n, AE;RAE; = AE, D (R)AE;, thus
IAE,RAE;|| = |AE, D¢ R)AE|| < |25 ®), 1=j=n.
Hence
@ max AL, RAE, | < |3 (R
=j=n

Combining (1) and (2) we have
(3) |B5 (R)|| = max||AE,RAE,|.

1=si=<n
Since {‘fbg,}, as P varies, is a decreasing net of projections on R(H), it is clear
from (3) that (ii) is equivalent to Definition 2 of the set R(%,~).

In the sequel we shall define a set of operators which is, in some sense, the
“adjoint” of s4(¥,~) and a subset of this analogous to R (¥,~). Both of them are
needed for the study of the convergence of the module triangular integral.
Let ¢ be the order homomorphism from €= = {I — E for all E € ¥} into '3
such that I — E — I — E. Then define

A@ ', ~)={XEBMH): XU -E)=U — EYXU — E)forall E € &}
={X €ERB(H):EX(I — E)=0forall E € €}.

It is easy to see that (§*,~) is an (Alg %)*-module; for example if A €
(Alg ®)* and X € A(¥*,~) then EXA(I — E) = EXEA( — E) = 0 for each
E € ¢, and so XA € A(E*,~). Similarly AX € A(€",~). We shall refer to
A(E*,~) as the complementary module of A(€,~).

When € is replaced by €* we denote the corresponding triangular integrals,
defined in Section 3, by g+, &', U* and D* and the corresponding sums
by UILg., %5 and D3 respectively. Obviously Zi(A) = A — Up(A) and Uz =
A — $5(A) for any operator A € B(H).

Definition 4. We define the set R(€",~) to be the subset of A(€*,~) such
that given any positive € there exists a partition P of € with the property

IAE,XAE||<e forl=i<n.
Lemma 5. Let A = d(%,~) N A(&*,~). Then
ANRE,~)=odNREB,~) =R(E,~) N RE*,~) = (0).
Proof. Let X € . Then for any partition P of € we have AE,XAE, = XAE,

and hence Q}Jg (X) = X. Therefore & (X) = X. Hence from Lemma 3(i1) if X > O,
X & R(E,~) and so & N R(E,~) = (0).
Similarly A4 N RE,~) = (0) and since R (€, ~) N R(E*,~) C sl we have

RE,~) N RE+,~) = [RE,~) N RE*,~)] N o= (0).
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The following theorem describes the set of operators for which the integral 7
exists.

Theorem 6. The triangular integral of an operator A in B(H) with respect
to the d-module A(8,~) exists if and only if A = R + S where R € R (¢, ~)
and S € R(&*,~). The operators R and S are then uniquely given by R
J(A) and S = T+ (A) = 11m s (A).

Proof. Suppose A = R + §. Then by Lemma 3(ii) and the definition of
R(E*,~), given any &€ > O there exists a partition P, of € for R and a partition
P, of € for S such that, if P = {E;,1 <=i=n,0=E,<E; <...<E,=1
is any refinement of #, U @,, then |

_ £ _ €
max |AERAE,| < 3 and max|AE;SAE;|| < 3

1=i=<n I1=si=n

Now if E,_, < F, = E,

' 2 F,AAE, = 2 (F; = E_ )R + S)AE, + ¥, Ei_;(R + S)AE,.
i=1 i=1 i=1]

It is easy to prove that if R € #(é,~) then G&gs(R) = Rand if S € A&*,~)
then £5(S) = 0. Therefore

S FAAE, - R| = | (Fi - E_)R + )AE, - 3, AERAE,
i=1 i=1

i=1

<> (F, - E_)R + S)AE| + |D, AE.RAE,
i=1 =1

< max [|[(F; — Ei<))(R + S)AE,| + |AE.RAE|]

1=<i<n

2e €
=—+-=g¢,

3 3

Hence T (A) exists and I (A) =
Conversely if T (A) exists then for a given € > 0 there exists a partition P =
{E;:1 < i < n} and for any choice of F; with E;,_, = F; = E; we have

4) F(A) - Y, FAAE] <e.
| i=1
But
(5) A=%,(A) + Dy (A) + L3 (A).

Clearly Qg (A) € R(E,~). Similarly E.£$ (A) € R(E+,~) since it is a “lower sum”
of the type £ (A) but with respect to the complementary nest.
Now (4), which is equivalent to the existence of J(A), implies that, as the
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partition is refined the first sum of (5) converges to J(A), the second sum con-
verges to zero and hence the third sum is convergent. Let R and S be the norm
limits of £ (A4) and L3 (A) respectively. Then since by Lemma 3(i) R(%é,~) and
R(E*,~) are norm closed we have R € R(¥€,~), § € R(€"*,~) and hence A =
R+ S.

The uniqueness of R and S follows from Lemma 5. Indeed, if A = R, + §; =
R,+ S,then R, - R, =85, — S, € R(E,~) N RE*,~) = (0).

Corollary 7. The set R(€,~) = {R € A(¥¢,~): g'(R) exists}.

Proof. Since J(R) exists it follows R = R, + S with R, € R($,~) and § €
R@E-,~). IfR € A(E,~)then S =R — R, € 4 NR(E",~) = (0) and hence
R = R,.

We shall conclude this section by examining the convergence of the integrals
£(A), U(A) and QD(A) and establishing some relations between them. The fol-
lowing theorem gives necessary and sufficient conditions for the existence of those
integrals.

Theorem 8. If any two of L (A), °TL(A), OD(A) exist, then so does the third.
These integrals all exist if and only if A = R + D + § with R € REE,~),
D € A and S € R(E*,~). The operators R, D and S are then uniquely given
by

R = $(A)
D = $(A) = UA) — L(A)
S = A — AU(A).

Proof. For any partition & of € we have
Uz (A) = Dy (A) + Lo (A).

Hence it is clear that if two of & (A), 0fL(A) and .@(A) exist then so does the third.
Also since

A=25(4) + Da(A) + [A — Up(4))
if all the integrals exist we shall have
A= 2(A) + D) + [A — UQA)].

Using the fact that EB(A) e R(E,~) and A — WUA) € R(E*,~), it remains to
prove that QD(A) € . For this let E € € and take a partition @ = {E;:1 < i < n}
of € such that E is a member of . Then if E = E; for some j:1 = j = n, we
have

n j n
i=1

i=1 =1

and it is clear that (6) holds for any partition of € which is a refinement of P.
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Hence E(A) = B(A)E and since E is arbitrary, this is true for all E € €. That
is, D(A) € A. |

Conversely, if A = R + D + S with R € R(é,~), § € R(E*,~) and
D € 4 then, as in the proof of Theorem 6, we have

25 (D) = £5(5) =
for all partitions of % and so | |
25(A) = L5(R).

Also Us(R) = R. From Lemma 3(ii), given € > 0 there exists a partition P of
€ such that '

IR = 25 ®)|| = |22 R)| < e.

Hence £(A) exists and is equal to R. Also since D € s, working as in Lemma
5, we get %(D) D. Moreover since J(R), J(S) exist we have QZJ(R)

%(S) = 0. Hence BD(A) = @(D) = D. Now the existence of %(A) and % (A) and
the first part of the theorem imply that WU(A) also exists and

UA) = DA)+ LA =D+R=A-S§
from which we get
S =A— AUA).

Corollary 9. If A € A(€,~) then )
(i) L(A) exists if and only if WD(A) exists and in this case A = D) +

$(A)
(ii) T (A) exists if and only if B(A) = O and in this case A = T (A).
Proof. Since for A € A(€,~) we have WU(A) = A, Theorem 8 implies (i).

Condition (ii) is immediate from Lemma 3(ii) and Corollary 7.

Next we consider the module triangular integral of a compact operator. We
shall use the following which is Lemma 4.1 in [3].

Lemma 10. Let K be a compact operator and let & be a totally ordered family
of projections. Then

lim|FK — EK]| = 0
EcH

where F = sup ¥ and the limit is taken as E increases.

Let € be a complete nest and E — E be a left order continuous homomor-
phism of € into ¥. Recall the definition of G« for a G € €. That is, Gy =
inf{E:E > G}. Then we have the following

Lemma 11. Let 6 be as above and K be a compact operator, Then
(i) im|G"KG~ — EKE|| = 0, G € € and the limit is taken as E increases.

E<G

(ii) lim||G«KG™ — EKE|| = 0, G € € and the limit is taken as E decreases.

E>G
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Proof. (i) Since E — E is left order continuous we have lim E = G . Also
E<G

|G"KG~ — EKE||=|G KG~ — EKG™ + EKG™ — EKE||
=< ||G K - EK| + |KG™ — KE]|.

From this inequality and the previous lemma we get (i). The proof of (ii) is similar
to (i) and is omitted.

In the sequel we prove that %P (K) exists for every compact operator K and give
an expression of %(K) in terms of projections.

Proposition 12. Let K be a compact operator, A(€,~) be a weakly closed
module and ¥ = {F = E — E" forall E € §,E # E"}. Then, if F = E — E~,

we have
= > FKF.

Proof. The proof of this proposition is modelled on the proof of Lemma 4.3
of [5]. Put

Ko=K - > FKF.

FEF

For any G € € we have (G — G )Ko(G — G7) = 0. From the definition
of G~ and Lemma 11 we have that, for a given € > 0 there exists a projection
E; € € such that E; < G and

”(G ~ Eg)Ko(G — Eo)" < E.

Similarly from the definition of G« (note that (G* — G)K,(G" — G) = 0 im-
plies (Gx — G)Ko(G*™ — G) = 0) and Lemma 11(ii), there exists a projection
Fs; € € such that F; > G and

|(Fe — G)Ko(Fs — G| <e.

Therefore for each projection E € €, belonging in the order interval (Eg,F¢) we
have |

(6") I(E — G)KH(E — G)|| <.

As G varies over % the set of order intervals {(Eg,Fs)} is an open cover of the
compact space € and so it has a finite subcover {(E;,,Fs,):1 <i=<n}. If P is a
partition of € containing each of the projections Eg;,, G;, Fg,, i = 1,2, ..., n
then since |

D (Ko)|| = max||AE;KoAE,|  (Proof as in Lemma 3),
EjE@
(6") implies || D (Ko)| < €. Also

Do (Ko) = Dp(K) — D, FKF.

FE®
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Therefore D(K) = 2 g FKF and the proof is completed.

Corollary 13. Let K be a compact operator in 4(€,~). Then K = K, + K,
where K, = D(K) and K, = L(K).

Proof. By the previous proposition 9(K) exists. Hence by Corollary 9(i)
L(K) also exists and K = D(K) + L(K).

Proposition 14. Let K be a compact operator in A(€,~). Then
(i) The integral E’T(K) exists sz (E—-—ED)KE —E)=0o0rifé€isa

continuous nest, and in both cases we have J(K) =

(ii) If the nest € is continuous and the order homomorphism E — E is such
that E < E for all E € €, the operator K is uniquely determined by its
real or imaginary part.

Proof. Proposition 12 implies @(K) = 0 in both cases and hence part (i) fol-
lows from Corollary 9(ii). For part (ii), when E < Eforall EE € then A(%,~)
is an ideal of Alg € and K* € s(%",~). Since € is continuous, PLK*) =
B(K*) = 0. Hence T+ (K*) exists and T+ (K*) = K*. Therefore, if K = X + iY
is the decomposition of K into real and imaginary parts, then K = J(K) =
2?7(X) = 2iT(Y).

S. The module triangular integral on symmetrically-normed ideals. In this
section we prove that the nets {¥s}, {OU@} {%s} converge onthe C,, 1 = p =
classes and for any A € C,, the nets {£s(A)}, {OUs(A)}, {9Dqp(A)} converge in
RB(H). We also prove that, when € is continuous, every operator X € €, is writ-
ten as X = X; + X, where X, € #(¢,~) and X; € s{(¢",~), and the condition
X € €, is necessary and sufficient for the module triangular integral J (X) to exist
for every continuous nest € and any #(€,~).

We recall now from [4] the definitions of €,, 1 = p < x classes and of 6,
and, its adjoint, 6, symmetrically-normed ideals. (For more details see [7] or
[8].) The characteristic numbers (s,(A)) of the compact operator A are the sequence
of eigenvalues of (A*A)"/? in decreasing order and repeated according to multi-
plicity. Then

€, = {A: 2 s;(A)? < w}
i=1
- 1

€, = {A: 273,-(A)<00}

i=1 ¢
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To conform with the definition of 6,, 1 =< p < », from now on we shall denote
by ‘€. the ideal of all compact operators in B(H). If A € 6, we denote the trace
of A by tr(A).

Each of these ideals is determined by a symmetric norming (s.n.) function (for
the definition of a s.n. function see [8], page 77). The corresponding s.n. func-
tions to these ideals are

aQ

% 1/p

‘ |

b, (&) = (Z |§.—|P) L 1l=sp<o, b=, - &
i=1 '

i=1

and

where £ = {£]} is any sequence of real numbers tending to zero and {n;} is a
permutation of the positive integers such that {|£,|} is non-increasing. The ideals
€,, €., €q, are Banach spaces under the corresponding norms

_ e “ 1 z si(A)
Al = (2 5i(A)° ) c Al =D =s4),  Allg = sup =

n
i=1 T " 1

L

l

i=1

In the previous section we studied the convergence of the module triangular
integral of an operator A € ®R(H) in the uniform operator topology of B(H). If
P ={E:1<i=<n}isapartitionof € and E,_, = F, <E,i=1,2,...,nthen
if J(A) exists, as we know

F(A) = lim ), F,AAE,
P =1

and it is clear that $3(A) and 0119. (A) converge to a common limit; or equivalently
@g(A) converges to zero and one of Fs(A), Uy (A) converges. The converse of
this is also true in the uniform operator topology and it follows from the inequality

N (F, - E._DAAE|| = |Ds) or |D(E.— F)AAE;| <|Bs(A).
i=1

i=]

We shall show that this converse remains true on any symmetrically normed ideal.
Indeed, let €, be any symmetrically normed ideal determined by the s.n. function
&, and suppose that for X € €,, £5(X) converges in ¢, and D5 (X) tends to zero
in the symmetric norm |- ||,. We have

n

2 (F: = Ei—l)XAEi = 2 (Fj - E'—I)QB@(X)-
j=1

i=1
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If {s,(T)} denotes the set of characteristic numbers of an operator T, then by
si(AT) =< ||Alls;(T), k = 1,2, ... forany A € B(H), we get

Sk (2 (F; - EE-I)XAEE) = Sk (2 (Fj — Ej—l)gb?(x))
i=1

j=1

= (1> (F; = E;_)||su@s (X))
j=1
< 5(Ds (X)).
Put for convenience, s; = sk(z:; 1(13" ;= E",-_,)XAE,-) and 5" = 5(%P»(X)). Then

(51,825 - 580,05, ..) = &(sY,53,...,5,,0,...)

for all » and so ZLI (F, — E,_)XAE|[4 < ||@s(X)|s which clearly implies the

existence of the module triangular integral J(X) in %,

As we have mentioned we are going to study the module triangular integral on
symmetrically normed ideals and the previous discussion enables us to confine
our attention to the convergence or otherwise of $5(A), Ugp(A) and By (A).

As P varies, the set {fBg.} forms an increasing net of projections on B(H) in
the sense that if &, is a refinement of P then L5 > Ls. That is, £y =
58@5891 — EB@L;B@.

Similarly {Us} and {&s} are both decreasing nets of projections on B(H). In
the sequel we shall prove that these nets automatically converge on the 6,, 1 <
p < », classes, and that for any operator A in the symmetrically normed ideal
@, the nets {£5(4)}, {Us(A)} and {Ds(A)} converge in B(H). We shall make
use of the following two theorems. The first one is concerned with the limits of
an increasing or decreasing sequence of uniformly bounded projections on a re-
flexive Banach space (see, for example, [2]) and the second one describes the
dual spaces of the symmetrically normed ideals that are used in this section.

Theorem 15. If {P.:vy € I} is a uniformly bounded increasing (respectively
decreasing) net of projections on a reflexive Banach space, then it converges in
the strong operator topology to its supremum (respectively infimum).

Theorem 16. The dual spaces of €, (1 < p < =), 6, and 6, are respectively
isometrically isomorphic 10 €, (1/p + 1/q = 1), BH) and 6q. A conjugate
linear isomorphism is given by A & f, where

fa(X) = r(A*X).

We are now ready to characterize the adjoints of EE@ . Oilg. , and Q}Jg. The fol-
lowing lemma is the analogue of Lemma 2.3, [4].

Lemma 17. If € is one of the ideals defined above the adjoints of Lo, Ug
and Dg regarded as operators on € are respectively Ly, Uy and Dy regarded
as operators on €* where €* is the dual of the ideal 6.
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Proof. To prove this we use the fact that if XY € €, then tr(XY) = tr(YX).
Let ® = {E;:1 < i < n} be a partition of € and let A € 6, B € €*. Then,

La*(fa)(A) = fo(La(A)) = tr(B* 2 Ei—lAAEi)
i=1

= > tr(B*E,_,AAE))

= 2, [tr((E,-\BAE)*A)]

= “[(; E‘,.,.,BAEi) *A]

= tr(£a(B)*A) = fa@(A).

Hence Lo*(fz) = fa4m which means that the adjoint of the operator %5 on € is

Ly regarded as an operator on €*. Similarly we identify the adjoints of the op-
erators MUy and V.

Corollary 18. The operators Py, G&g and By are self-adjoint projections on
the Hilbert space 6, and therefore

|15}, = H%Hz I%g], = 1.

Proof. Immediate from Lemma 17.

The following set of identities is the main tool for the proof of the convergence
of the nets {£3], {Up] and {Ds] in the norm of €, (1 < p < x).

Lemma 19. Let A € B(H). For any nest € and any partition P of € the
following identities are valid:

(i) Do (A)*Dy(A) = Dp(A*Dg (A))
(i) $2(A)*Ea(A4) = Lo(La(A)*A) + (Us(La(A)*A))*
(i) Ug(A)*Us(4) = La(Ug(A)*A) + (Us(Ug (A)*A))*.

Proof. Since the proof of (i) is easy and the proofs of (ii) and (ii1) are based
on similar manipulations, only the proof of (ii) i1s given. For this we use the fact
that E; < E, implies E; < E; and

AE, fori= j

EAE, =
oy {0 fori < j.

The result now comes from a series of simple calculations. Indeed,

La(A)*La(A) = (z AE,-A*E,--,)(Z E-"_,AAE})
i=1 j=1
- 2 Ef_l(z AE}A*E}—I)AAEIE + E AE A% (Z E-—lAAE})Ei
' j=1 i=1 =1
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e * n *’ *
= z EE—I(Z E}—lAAE}) AAQE,; + [ E, (Z E_IAAE) AAE]
J=1 i=1

i=1 j=1

-
—

= Lo[La(A)*A] + (Up[La(A)*A])*.

Now to prove one of the main results of this section, namely the convergence
of the nets {5}, {Usp} and {Bp} on the €, (1 < p < x) classes we shall use the
following theorem which is essentially Theorem 3.2 in [4].

Theorem 20. If 1 < p < o, then for any nest, the nets {£3}, {Us} and {Ds}
are uniformly bounded, considering them as operators on 6,

Theorem 21. If 1 < p < x, then for any nest €, the nets (L5}, {Us} and
{%s} converge strongly to bounded operators &£, WU and % on the space 6.

Proof. We know from Theorem 16 that 6, (1 < p < «) is reflexive. Therefore
from Theorem 15 it will be sufficient to prove that {$s}, {is} and {By} are
uniformly bounded. We shall use the fact that if X, Y € %, then ||X||, = [ X*|,,
IxY|, = XY, and |X], = |X*X],. Also if J is an operator on €, the op-
erator norm of I will be denoted by || 7],

From Lemma 19(i), for all A € €,, we have

(B5(A)B, = [Da(A)*Da(A)],
= | Da(A*Dp(A))],
< |Dgl|,,[|A*DBp(A)],

< [Dall, | A, D2 A)]l2,

= "gb‘?”p”A||2p”®9*(A)”2p-
Dividing by ||A||;,/|@s (A)||;, and taking the supremum over all A € 6,, we get

(7) [D5ll2, =< Dl
Similarly from Lemma 19(ii), for all A € €,

|[LaA)3, = 1La(A)*La(A),
= |L5[L5(A)*A] + Us[La(A)*AD,
= || Lall, 1 La(a)*Al, + [AUsll, | L2(A)*All,

= (1251, + [PUsl Lo @)z, AL
Hence, as above, dividing by {|£s (4)|2,/|All., and taking the supremum, we get

8) 122, =< [1€all, + s -

Finally from Lemma 19(iii) with the same argument we have,
(9) Usllz, < [1Lsll, + [WUal],.
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Now from Theorem 20, Corollary 18 and the inequalities (7), (3) and (9) we have
that for 2 < p < «, the nets {£3}, {Up} and {9z} are uniformly bounded. The
same result follows for 1 < p < 2 by duality using Lemma 17. (Note that
6% = €, q =p/(p — 1) and g = 2 implies 1 < p = 2.) The proof now is
completed by Theorem 15.

Next we shall prove the existence of the integral @(K) for any compact operator

K € 4. in a different way from that in Proposition 12. This proof depends on
Theorem 21.

Theorem 22. For any nest € and any partition P of ¢, IDgll. = 1 and the
net {9s} converges on €.

Proof. Let ® = {E;:1 < i < n} be a partition for € and x be any non-zero
vector in H. Then ZL JAEx|* = ||x|* and for any A € B(H),

B (A)x|= Z IAE.AAE x|

< (max|/|[AEAAE) Z A E x|

1=<i=n

= [|AJFFl<ll*

Hence ||9iig>"m < |. Let A € 6. and X € 4€,. Then for any two partitions %, and
%, of €, we have

|Bs,(A) = Do A)] = [Ba (A = X)|| + [Bs (X) = Do (X + [Da,(X — A)
< 2A — X|| + [@s,(X) = Da(X))-

Since, by Theorem 21, {%5} converges strongly in €, and 6, is dense in 6. it
follows that {94 (A)} is a Cauchy net in €, and hence converges.

_Finally in this section we shall prove that the nets {$s(A)}, {Usz(A)} and
{B5(A)} converge in B(H) for any A € €. The class €, which was introduced
by I. V. Macaev with norm slightly different from that in [4], (Macaev used the
sequence 1/(2i — 1) instead of 1/i), plays an important role in the theory of
triangular integrals. For example the condition X € € is necessary and sufficient
for the convergence of the triangular integral J(X) = [¢EXdE for every contin-
uous nest €. (See Theorem 4.1, Ch. III, [8].)

J. A. Erdos in [4] gave new simpler proofs for the convergence of the nets
{£5(A)}, {Uz(A)} and {Ds(A)}, A € 6, and we shall use his techniques to prove
our results. It should be mentioned here that in the proof of Lemma 3.2 Sec-
tion 4, [4] there are some misprints. Namely instead of G, = I and § =

ZLIG,.R(F,- — F,_,) we should have G,,, = Tand § = ZL 1F R(G;.y — G,) and
subsequently all the summations and maxima should be taken from 1 to & + 1.
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The following lemma establishes bounds for the characteristic numbers of the
image of a rank one operator under Uy and it is the main tool for proving the
convergence theorem.

Lemma 23. If P is a partition of any nest € and R is a rank one operator of
norm one then the characteristic numbers of Ug(R) satisfy the conditions

- 1
S U R ==, r=12,....
r

Proof. Suppose P = {E;:0 < i < n} and let P = {0,,0,,...,0,}, m =< n be
the set of distinct images of the members of P under the order homomorphism
E — E. Put

P ={E,€EP:E,=Q,1<j<=mandforany E, € P:E; = Q,> E; = E}.

In other words for each j:1 < j =< m, E, is the largest member of &P with the
property E; = Q,. We choose a subset {F; } of P, inductively as follows.

Let F, be the projection in %; with F, = 0 and let F; be the smallest member
P of P, such that

8 3 1
[P — Fi-DR®P = Fj-)l = -~
If F, is the largest member of {F;} then

. 1
I(F — FQRU — Fy)|| < -

For each j the operator (F;, ~ F;_,)R(F; — F;_;) has rank one and so there exist
unit vectors x;, y; with

<

(F} - F}-—l)xj = Xjy (F} = F}—l))’j =)
and |

- . - 1
((F; = F-DR(E; = Fi-)x )| = | = F-)R(F, = Fp| =~

Hence as R has rank one

k

_ 5 k

1= [IRll = Rl = 2, K = F-DR(E; = F)x, )] = -
j=1

and so k = r. Let G; be the member of P, immediately preceding F; and put
Gi+1 = I. Then from the definition of F; it is clear that

L N 1
(10) IG; = F-0RG; = Fi-oll ==, j=12....k+1.

Define
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k
S o z F}R(GJ+1 = Gj).

j=1
Then S has rank at most r and using a matrix calculation we can work out that

k+1
cjil@(R) - 8§ = 0&9[2 (G; — F}—l)R(Gj - Ei—l):l
j=1
k+1

=Y (G, - F_)Us(R)G; ~ Fy-y).
j=1

But s,.,;(X) = inf{|X — 7| :rank(T) = r} (see [8], page 48). Hence
5,41[Us(R)] < [Us(R) — S|

k+1

Y (G, — F_)Us(RXG; — F_,)
j=1

(11)

= max {|(G, — F-)Us(RNG, — F_)|}-

| =< j=k+1

From Corollary 18 we have |Ug|, = 1 and it is easy to see (by a matrix calcu-
lation, as above) that

(G, — F_)Us(R)G, — F,_y) = Us[(G, — F,_)DR(G; — F,_))].

Using the fact that for any T € B(H),
one, we have from (11)

5,+1[Us(R)] = max {Us[G; — F,_)R(G, — F_)I|}

7| = ||T|l, with equality when T is rank

1< j<k+1
< max |[(G;, — F,-))R(G; — F;_)|
1= j=k+1
= lmazil”(éj — F,_)R(G; — F,_))|, (using (10))
< j=
1
< -
r

Theorem 24. For any nest €, the nets {$3}. {Up} and {Dy} converge strongly
to bounded operators from €, to B(H).

Proof. We know that ||A|| < ||A|, for every A € €6,,. Hence from Theorem 22
[2a(4)]| < [lAll < ||All,

and so ||9:D9H =< 1 on 6,. Moreover, as in Theorem 22, we can prove that {Dgp}
converges strongly on €,,. Since £y = WUy — Dy it will be sufficient for the proof
of the theorem to prove the convergence of {AUg}.

Let A € €,. Then Uz (A) is compact and thus
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Up(A) = D, si(Up(A))x; ® ¥,

i=1

where {x;} and {y,} are orthogonal systems and II% (A)|| = sl(oﬁg (A)). Therefore

US| = (Up(A)x;, ;)
= tr((y, ® x;)Us(A))

= 2 [tf(()’l h2¢ xl)EiAAEi)]
=) [tr(AE(y, ® x)EA))
i=1

= tr [ > AE(y, ®x1)E,-A]
i=1

= tr(Ugp(y, ® x)*A)  (and using Theorem 16)
= f"l-.l.g-(n@yn(A)

< [Us(x; ® y)llalAll.
But

"oitg.(xl X )’1)2” = z Ei(x, ® y))AE;z
i=1

< max{|AEx ® El}- 2]

for any z € H and so U (x; ® y)|| = 5:(Us (x, ® y,)) = 1. Hence, using Lemma
23,

2 sr‘(oil@(xl ® y))
i=1

"0:&9(351 X y1)”n = sup ~ - <1

> -

i=1 ¢

and thus [[Ug (A)]| = [A]..

Now repeating the same argument as in Theorem 22 and using the fact that €,
is dense in 6, we have that {s(A)} is a Cauchy net in €, and hence converges.
This completes the proof.

Theorem 25. (i) Let X by a compact operator. A necessary and sufficient
condition for the module triangular integral J(X) of X to exist for every contin-
uous next € and for every weakly closed module associated with € is that X €

€.
(ii) If X € €, and A(€,~) is a module with &€ a complete nest such that
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E(E’ —E)XE-E)=0forallEE€ €, E # E™ then 9-T(X) also exists.

(iii) Let X be an operator in €, and A(€,~) any weakly closed module with
€ continuous. Then X = X, + X, where X, € d(%,~) and X, € A(€*,~). The
same is true for any operator X € €, satisfying condition (ii).

Proof. For any operator X € €,, when € is continuous or when X satis-
fies condition (ii) we have QD(X ) = 0. Therefore from Theorem 24, in both
cases, J(X) exists and X = LX) + (X — (X)) where LX) € AB,~) and
X — YX) € A(E*,~). The necessity in (i) is immediate from the fact that the
triangular integral J(X) = [<EXJE exists for every continuous nest if and only

if X € €,
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