Visualisation of graphs

Introduction

The graph visualisation problem

The slides of this presentation were created by researchers at Karlsruhe Institute of Technology (KIT), TU Wien, U Wuerzburg, U Konstanz,

Graphs and their representations

What is a graph?

- graph $G=(V, E)$

■ vertices $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$
\square edge $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$

Graphs and their representations

What is a graph?

- graph $G=(V, E)$

■ vertices $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$
\square edge $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$
Representation?

Graphs and their representations

What is a graph?

- graph $G=(V, E)$

■ vertices $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$
\square edge $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$

Representation?

- Set notation
$V=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}\right\}$
$E=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{8}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{3}, v_{5}\right\},\left\{v_{3}, v_{9}\right\}\right.$, $\left\{v_{3}, v_{10}\right\},\left\{v_{4}, v_{5}\right\},\left\{v_{4}, v_{6}\right\},\left\{v_{4}, v_{9}\right\},\left\{v_{5}, v_{8}\right\}$, $\left\{v_{6}, v_{8}\right\},\left\{v_{6}, v_{9}\right\},\left\{v_{7}, v_{8}\right\},\left\{v_{7}, v_{9}\right\},\left\{v_{8}, v_{10}\right\}$, $\left.\left\{v_{9}, v_{10}\right\}\right\}$

Graphs and their representations

What is a graph?

- graph $G=(V, E)$

■ vertices $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$
\square edge $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$

Representation?

- Set notation
$V=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}\right\}$
$E=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{8}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{3}, v_{5}\right\},\left\{v_{3}, v_{9}\right\}\right.$,
$\left\{v_{3}, v_{10}\right\},\left\{v_{4}, v_{5}\right\},\left\{v_{4}, v_{6}\right\},\left\{v_{4}, v_{9}\right\},\left\{v_{5}, v_{8}\right\}$,
$\left\{v_{6}, v_{8}\right\},\left\{v_{6}, v_{9}\right\},\left\{v_{7}, v_{8}\right\},\left\{v_{7}, v_{9}\right\},\left\{v_{8}, v_{10}\right\}$,
$\left.\left\{v_{9}, v_{10}\right\}\right\}$
- Adjacency list

$v_{1}:$	v_{2}, v_{8}	$v_{6}:$	v_{4}, v_{8}, v_{9}
$v_{2}:$	v_{1}, v_{3}	$v_{7}:$	v_{8}, v_{9}
$v_{3}:$	$v_{2}, v_{5}, v_{9}, v_{10}$	$v_{8}:$	$v_{1}, v_{5}, v_{6}, v_{7}, v_{9}, v_{10}$
$v_{4}:$	v_{5}, v_{6}, v_{9}	$v_{9}:$	$v_{3}, v_{4}, v_{6}, v_{7}, v_{8}, v_{10}$
$v_{5}:$	v_{3}, v_{4}, v_{8}	$v_{10}:$	v_{3}, v_{8}, v_{9}

Graphs and their representations

What is a graph?

- graph $G=(V, E)$

■ vertices $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$
\square edge $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$

Representation?

■ Set notation

- Adjacency matrix

$$
\begin{aligned}
V= & \left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}\right\} \\
E= & \left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{8}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{3}, v_{5}\right\},\left\{v_{3}, v_{9}\right\},\right. \\
& \left\{v_{3}, v_{10}\right\},\left\{v_{4}, v_{5}\right\},\left\{v_{4}, v_{6}\right\},\left\{v_{4}, v_{9}\right\},\left\{v_{5}, v_{8}\right\}, \\
& \left\{v_{6}, v_{8}\right\},\left\{v_{6}, v_{9}\right\},\left\{v_{7}, v_{8}\right\},\left\{v_{7}, v_{9}\right\},\left\{v_{8}, v_{10}\right\}, \\
& \left.\left\{v_{9}, v_{10}\right\}\right\}
\end{aligned}
$$

- Adjacency list

$v_{1}:$	v_{2}, v_{8}	$v_{6}:$	v_{4}, v_{8}, v_{9}
$v_{2}:$	v_{1}, v_{3}	$v_{7}:$	v_{8}, v_{9}
$v_{3}:$	$v_{2}, v_{5}, v_{9}, v_{10}$	$v_{8}:$	$v_{1}, v_{5}, v_{6}, v_{7}, v_{9}, v_{10}$
$v_{4}:$	v_{5}, v_{6}, v_{9}	$v_{9}:$	$v_{3}, v_{4}, v_{6}, v_{7}, v_{8}, v_{10}$
$v_{5}:$	v_{3}, v_{4}, v_{8}	$v_{10}:$	v_{3}, v_{8}, v_{9}

Graphs and their representations

What is a graph?

- graph $G=(V, E)$

■ vertices $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$
\square edge $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$

Representation?

- Set notation
- Adjacency matrix

$$
\begin{aligned}
V= & \left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}\right\} \\
E= & \left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{8}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{3}, v_{5}\right\},\left\{v_{3}, v_{9}\right\},\right. \\
& \left\{v_{3}, v_{10}\right\},\left\{v_{4}, v_{5}\right\},\left\{v_{4}, v_{6}\right\},\left\{v_{4}, v_{9}\right\},\left\{v_{5}, v_{8}\right\}, \\
& \left\{v_{6}, v_{8}\right\},\left\{v_{6}, v_{9}\right\},\left\{v_{7}, v_{8}\right\},\left\{v_{7}, v_{9}\right\},\left\{v_{8}, v_{10}\right\}, \\
& \left.\left\{v_{9}, v_{10}\right\}\right\}
\end{aligned}
$$

- Adjacency list

$v_{1}:$	v_{2}, v_{8}	$v_{6}:$	v_{4}, v_{8}, v_{9}
$v_{2}:$	v_{1}, v_{3}	$v_{7}:$	v_{8}, v_{9}
$v_{3}:$	$v_{2}, v_{5}, v_{9}, v_{10}$	$v_{8}:$	$v_{1}, v_{5}, v_{6}, v_{7}, v_{9}, v_{10}$
$v_{4}:$	v_{5}, v_{6}, v_{9}	$v_{9}:$	$v_{3}, v_{4}, v_{6}, v_{7}, v_{8}, v_{10}$
$v_{5}:$	v_{3}, v_{4}, v_{8}	$v_{10}:$	v_{3}, v_{8}, v_{9}

Graphs and their representations

What is a graph?

- graph $G=(V, E)$

■ vertices $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$
\square edge $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$

Representation?

■ Set notation

$$
\begin{aligned}
V= & \left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}\right\} \\
E= & \left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{8}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{3}, v_{5}\right\},\left\{v_{3}, v_{9}\right\},\right. \\
& \left\{v_{3}, v_{10}\right\},\left\{v_{4}, v_{5}\right\},\left\{v_{4}, v_{6}\right\},\left\{v_{4}, v_{9}\right\},\left\{v_{5}, v_{8}\right\}, \\
& \left\{v_{6}, v_{8}\right\},\left\{v_{6}, v_{9}\right\},\left\{v_{7}, v_{8}\right\},\left\{v_{7}, v_{9}\right\},\left\{v_{8}, v_{10}\right\}, \\
& \left.\left\{v_{9}, v_{10}\right\}\right\}
\end{aligned}
$$

- Adjacency list

$v_{1}:$	v_{2}, v_{8}	$v_{6}:$	v_{4}, v_{8}, v_{9}
$v_{2}:$	v_{1}, v_{3}	$v_{7}:$	v_{8}, v_{9}
$v_{3}:$	$v_{2}, v_{5}, v_{9}, v_{10}$	$v_{8}:$	$v_{1}, v_{5}, v_{6}, v_{7}, v_{9}, v_{10}$
$v_{4}:$	v_{5}, v_{6}, v_{9}	$v_{9}:$	$v_{3}, v_{4}, v_{6}, v_{7}, v_{8}, v_{10}$
$v_{5}:$	v_{3}, v_{4}, v_{8}	$v_{10}:$	v_{3}, v_{8}, v_{9}

Why draw graphs?

Why draw graphs?

Graphs are a mathematical representation of real physical and abstract networks.

Why draw graphs?

Graphs are a mathematical representation of real physical and abstract networks.

Abstract networks

■ Social networks

- Communication networks

■ Phylogenetic networks

- Metabolic networks
- Class/Object Relation Digraphs (UML)

Why draw graphs?

Graphs are a mathematical representation of real physical and abstract networks.

Abstract networks

■ Social networks

- Communication networks
- Phylogenetic networks
- Metabolic networks
- Class/Object Relation Digraphs (UML)

Physical networks

- Metro systems
- Road networks
- Power grids
- Telecommunication networks
- Integrated circuits

■...

Why draw graphs?

Graphs are a mathematical representation of real physical and abstract networks.

- People think visually - complex graphs are hard to grasp without good visualisations!

Why draw graphs?

Graphs are a mathematical representation of real physical and abstract networks.

- People think visually - complex graphs are hard to grasp without good visualisations!
- Visualisations help with the communication and exploration of networks.

Why draw graphs?

Graphs are a mathematical representation of real physical and abstract networks.

- People think visually - complex graphs are hard to grasp without good visualisations!
- Visualisations help with the communication and exploration of networks.
- Some graphs are too big to draw them by hand.

Why draw graphs?

Graphs are a mathematical representation of real physical and abstract networks.

- People think visually - complex graphs are hard to grasp without good visualisations!
- Visualisations help with the communication and exploration of networks.
- Some graphs are too big to draw them by hand.

We need algorithms that draw graphs automatically to make networks more accessible to humans.

What are we interested in?

What are we interested in?

- Jacques Bertin defined visualising variables (1967)

What are we interested in?

- Jacques Bertin defined visualising variables (1967)

What are we interested in?

■ Jacques Bertin defined visualising variables (1967)

What are we interested in?

- Jacques Bertin defined visualising variables (1967)

The layout problem

- Here restricted to the standard representation, so-called node-link diagrams.

The layout problem

- Here restricted to the standard representation, so-called node-link diagrams.

Graph visualisation problem

in: \quad Graph $G=(V, E)$
out:

The layout problem

- Here restricted to the standard representation, so-called node-link diagrams.

Graph visualisation problem

in: \quad Graph $G=(V, E)$
out: nice drawing Γ of G
$\square: V \rightarrow \mathbb{R}^{2}$, vertex $v \mapsto$ point $\Gamma(v)$
$\square: E \rightarrow$ curves in \mathbb{R}^{2}, edge $\{u, v\} \mapsto$ simple, open curve $\Gamma(\{u, v\})$ with endpoints $\Gamma(u)$ und $\Gamma(v)$

The layout problem?

- Here restricted to the standard representation, so-called node-link diagrams.

Graph visualisation problem

in: \quad Graph $G=(V, E)$
out: nice drawing Γ of G
$\square: V \rightarrow \mathbb{R}^{2}$, vertex $v \mapsto$ point $\Gamma(v)$
$\square: E \rightarrow$ curves in \mathbb{R}^{2}, edge $\{u, v\} \mapsto$ simple, open curve $\Gamma(\{u, v\})$ with endpoints $\Gamma(u)$ und $\Gamma(v)$

But what is a nice drawing?

Examples

- See slides (and video) with more examples.

Requirements of a graph layout

1. Drawing conventions and requirements, e.g.,

Requirements of a graph layout

1. Drawing conventions and requirements, e.g.,

■ straight edges with $\Gamma(u v)=\overline{\Gamma(u) \Gamma(v)}$
■ orthogonal edges (i.e. with bends)

- grid drawings
- without crossing

Requirements of a graph layout

1. Drawing conventions and requirements, e.g.,
\square straight edges with $\Gamma(u v)=\overline{\Gamma(u) \Gamma(v)}$
■ orthogonal edges (i.e. with bends)

- grid drawings
- without crossing

2. Aesthetics to be optimised, e.g.

Requirements of a graph layout

1. Drawing conventions and requirements, e.g.,

■ straight edges with $\Gamma(u v)=\overline{\Gamma(u) \Gamma(v)}$
■ orthogonal edges (i.e. with bends)

- grid drawings
- without crossing

2. Aesthetics to be optimised, e.g.

- crossing/bend minimisation
- edge length uniformity
- minimising total edge length/drawing area
- angular resolution
- symmetry/structure

Requirements of a graph layout

1. Drawing conventions and requirements, e.g.,
\square straight edges with $\Gamma(u v)=\overline{\Gamma(u) \Gamma(v)}$
\square orthogonal edges (i.e. with bends)

- grid drawings
- without crossing

2. Aesthetics to be optimised, e.g.

- crossing/bend minimisation
- edge length uniformity
- minimising total edge length/drawing area
- angular resolution

■ symmetry/structure

\rightarrow lead to NP-hard
optimization problems

Requirements of a graph layout

1. Drawing conventions and requirements, e.g.,
\square straight edges with $\Gamma(u v)=\overline{\Gamma(u) \Gamma(v)}$
\square orthogonal edges (i.e. with bends)

- grid drawings
- without crossing

2. Aesthetics to be optimised, e.g.
\square crossing/bend minimisation

- edge length uniformity
- minimising total edge length/drawing area
- angular resolution

■ symmetry/structure

\rightarrow lead to NP-hard optimization problems \rightarrow such criteria are often
inversely related

Requirements of a graph layout

1. Drawing conventions and requirements, e.g.,
\square straight edges with $\Gamma(u v)=\overline{\Gamma(u) \Gamma(v)}$
\square orthogonal edges (i.e. with bends)

- grid drawings
- without crossing

2. Aesthetics to be optimised, e.g.
\square crossing/bend minimisation

- edge length uniformity
- minimising total edge length/drawing area
- angular resolution

■ symmetry/structure
3. Local Constraints, e.g.

\rightarrow lead to NP-hard optimization problems
\rightarrow such criteria are often
inversely related

Requirements of a graph layout

1. Drawing conventions and requirements, e.g.,
\square straight edges with $\Gamma(u v)=\overline{\Gamma(u) \Gamma(v)}$
\square orthogonal edges (i.e. with bends)

- grid drawings
- without crossing

2. Aesthetics to be optimised, e.g.

- crossing/bend minimisation
- edge length uniformity
- minimising total edge length/drawing area
- angular resolution

■ symmetry/structure

\rightarrow lead to NP-hard optimization problems \rightarrow such criteria are often
inversely related
3. Local Constraints, e.g.

■ restrictions on neighbouring vertices (e.g., "upward").
■ restrictions on groups of vertices/edges (e.g., "clustered").

The layout problem

```
Graph visualisation problem
in: Graph G = (V,E)
out: Drawing \Gamma of G such that
```


The layout problem

```
Graph visualisation problem
in: Graph G = (V,E)
out: Drawing \Gamma of G such that
    | drawing conventions are met,
```


The layout problem

```
Graph visualisation problem
in: Graph G = (V,E)
out: Drawing \Gamma of G such that
    | drawing conventions are met,
    aesthetic criteria are optimised, and
```


The layout problem

```
Graph visualisation problem
in: Graph G = (V,E)
out: Drawing \Gamma of G such that
    |
\square aesthetic criteria are optimised, and
 some additional constraints are satisfied.
```


The layout problem

```
Graph visualisation problem
in: Graph G = (V,E)
out: Drawing \Gamma of G such that
    |
    \square aesthetic criteria are optimised, and
     some additional constraints are satisfied.
```

- Many algorithmically interesting questions arise.
- Rendering problem downstream is ignored.

