Visualisation of graphs

Drawing trees and series-parallel graphs Divide and conquer methods

The original slides of this presentation were created by researchers at Karlsruhe Institute of Technology (KIT), TU Wien, U Wuerzburg, U Konstanz,
The original presentation was modified/updated by A. Symvonis

Trees

- Tree - connected graph without cycles
- here: binary and rooted

Trees

- Tree - connected graph without cycles
- here: binary and rooted

Tree traversal

Trees

- Tree - connected graph without cycles
- here: binary and rooted

Tree traversal
■ Depth-first search

Trees

- Tree - connected graph without cycles
- here: binary and rooted

Tree traversal

- Depth-first search

■ Pre-order - first parent, then subtrees

Trees

- Tree - connected graph without cycles
- here: binary and rooted

Tree traversal
■ Depth-first search

■ Pre-order - first parent, then subtrees
■ In-order - left child, parent, right child

Trees

- Tree - connected graph without cycles
- here: binary and rooted

Tree traversal
■ Depth-first search

■ Pre-order - first parent, then subtrees

- In-order - left child, parent, right child

■ Post-order - first subtrees, then parent

Trees

- Tree - connected graph without cycles
- here: binary and rooted

Tree traversal

- Depth-first search

■ Pre-order - first parent, then subtrees
■ In-order - left child, parent, right child

- Post-order - first subtrees, then parent
- Breadth-first search

■ Assignes vertices to levels corresponding to depth

Trees

- Tree - connected graph without cycles
- here: binary and rooted

Tree traversal

■ Depth-first search

■ Pre-order - first parent, then subtrees

- In-order - left child, parent, right child

■ Post-order - first subtrees, then parent
■ Breadth-first search

■ Assignes vertices to levels corresponding to depth

Level-based layout - applications

Decision tree for outcome prediction after traumatic brain injury Source: Nature Reviews Neurology

Level-based layout - applications

Family tree of LOTR elves and half-elves

Level-based layout - drawing style

- What are properties of the layout?
- What are the drawing conventions?

■ What are aesthetics to optimise?

Level-based layout - drawing style

Drawing conventions

- What are properties of the layout?
- What are the drawing conventions?

■ What are aesthetics to optimise?

- Vertices lie on layers and have integer coordinates
- Parent above children and "within their X-range" (typically, centered)
- Edges are straight-line segments
■ Isomorphic subtrees have identical drawings

Level-based layout - drawing style

- What are properties of the layout?
- What are the drawing conventions?

■ What are aesthetics to optimise?

Drawing conventions

- Vertices lie on layers and have integer coordinates
■ Parent above children and "within their X -range" (typically, centered)
- Edges are straight-line segments
■ Isomorphic subtrees have identical drawings

Drawing aesthetics

- Area

Level-based layout A simple approach

Input: A binary tree T
Output: A leveled drawing of T

Y-cooridinates: depth of vertices
X-cooridinates: based on in-order tree traversal

Level-based layout A simple approach

Input: A binary tree T
Output: A leveled drawing of T

Y-cooridinates: depth of vertices
X-cooridinates: based on in-order tree traversal

Level-based layout A simple approach

Input: A binary tree T
Output: A leveled drawing of T

Y-cooridinates: depth of vertices
X-cooridinates: based on in-order tree traversal

Level-based layout A simple approach

Input: A binary tree T
Output: A leveled drawing of T

Y-cooridinates: depth of vertices
X-cooridinates: based on in-order tree traversal

Issues:

- Drawing is wider than needed
- Parents not in the center of span of their children

Level-based layout: A divide and conquer approach
Input: A binary tree T
Output: A leveled drawing of T

Level-based layout: A divide and conquer approach
Input: A binary tree T
Output: A leveled drawing of T

Base case: A single vertex

Level-based layout: A divide and conquer approach

Input: A binary tree T
Output: A leveled drawing of T

Base case: A single vertex
Divide: Recursively apply the algorithm to
 draw the left and right subtrees

Level-based layout: A divide and conquer approach

Input: A binary tree T
Output: A leveled drawing of T

Base case: A single vertex
Divide: Recursively apply the algorithm to
 draw the left and right subtrees

Level-based layout: A divide and conquer approach

Input: A binary tree T
Output: A leveled drawing of T

Base case: A single vertex
Divide: Recursively apply the algorithm to
 draw the left and right subtrees Conquer:

Place the root to the center of its children

Level-based layout: A divide and conquer approach

Input: A binary tree T
Output: A leveled drawing of T

Base case: A single vertex
Divide: Recursively apply the algorithm to
 draw the left and right subtrees Conquer:

Place the root to the center of its children

Level-based layout: A divide and conquer approach

Approach-1: Non-overlapping enclosing rectangles

Level-based layout: A divide and conquer approach

Approach-1: Non-overlapping enclosing rectangles

Distance 1 or 2 (so that root is placed on grid point)

Approach-2: Overlapping enclosing rectangles

Implementation: Non-overlapping rectangles

- In a bottom up manner (by a post-order traversal) we compute for each vertex the 5-tuple:

Implementation: Non-overlapping rectangles

- In a bottom up manner (by a post-order traversal) we compute for each vertex the 5-tuple:

boundary

Implementation: Non-overlapping rectangles

- In a bottom up manner (by a post-order traversal) we compute for each vertex the 5-tuple:

\square For leaves: $(0,0,0,-,-)$

Implementation: Non-overlapping rectangles

- In a bottom up manner (by a post-order traversal) we compute for each vertex the 5-tuple:
 rectangle
 boundary

Rule-1:

- Parent centered above children

■ Parent at grid point

Implementation: Non-overlapping rectangles

- In a bottom up manner (by a post-order traversal) we compute for each vertex the 5-tuple:
 rectangle

Rule-1:

- Parent centered above children

■ Parent at grid point

Implementation: Non-overlapping rectangles

- In a bottom up manner (by a post-order traversal) we compute for each vertex the 5-tuple:
 rectangle

boundary

Rule-2:

- Parent above and one unit to the left/right of single child

Implementation: Non-overlapping rectangles

- In a bottom up manner (by a post-order traversal) we compute for each vertex the 5-tuple:
 rectangle

boundary

Rule-2:

- Parent above and one unit to the left/right of single child

Implementation: Non-overlapping rectangles

- In a bottom up manner (by a post-order traversal) we compute for each vertex the 5-tuple:

Rule-1:

- Parent centered above children
- Parent at grid point

Implementation: Non-overlapping rectangles

■ Computation of x-coordinates by pre-order traversal

Implementation: Non-overlapping rectangles

■ Computation of x-coordinates by pre-order traversal

- y-coordinate: the depth of each node

Implementation: Non-overlapping rectangles

■ Computation of x-coordinates by pre-order traversal

- y-coordinate: the depth of each node

Implementation: Non-overlapping rectangles

■ Computation of x-coordinates by pre-order traversal

- y-coordinate: the depth of each node

Implementation: Non-overlapping rectangles

■ Computation of x-coordinates by pre-order traversal

- y-coordinate: the depth of each node

Implementation: Non-overlapping rectangles

■ Computation of x-coordinates by pre-order traversal

- y-coordinate: the depth of each node

Implementation: Non-overlapping rectangles

■ Computation of x-coordinates by pre-order traversal

- y-coordinate: the depth of each node

Implementation: Overlapping rectangles

Recall...

Approach-1: Non-overlapping enclosing rectangles

Implementation: Overlapping rectangles

Recall...

Approach-1: Non-overlapping enclosing rectangles
Approach-2: Overlapping enclosing rectangles

Implementation: Overlapping rectangles

Recall...

Approach-1: Non-overlapping enclosing rectangles
Approach-2: Overlapping enclosing rectangles

Implementation: Overlapping rectangles

Recall...

Approach-1: Non-overlapping enclosing rectangles
Approach-2: Overlapping enclosing rectangles

Implementation: Overlapping rectangles

Recall...

Approach-1: Non-overlapping enclosing rectangles
Approach-2: Overlapping enclosing rectangles

Implementation: Overlapping rectangles

Recall...

Approach-1: Non-overlapping enclosing rectangles
Approach-2: Overlapping enclosing rectangles

Implementation: Overlapping rectangles

Recall...

Approach-1: Non-overlapping enclosing rectangles
Approach-2: Overlapping enclosing rectangles

rectangles

Implementation: Overlapping rectangles

The left/right contour of leveled tree drawing
The left/right contour of a leveled tree drawing of height h is the sequence of vertices $\left(v_{0}, \ldots, v_{h}\right)$ such that vertex v_{i} is the leftmost/rightmost vertex at depth i

Implementation: Overlapping rectangles

The left/right contour of leveled tree drawing
The left/right contour of a leveled tree drawing of height h is the sequence of vertices $\left(v_{0}, \ldots, v_{h}\right)$ such that vertex v_{i} is the leftmost/rightmost vertex at depth i

Implementation: Overlapping rectangles

The left/right contour of leveled tree drawing
The left/right contour of a leveled tree drawing of height h is the sequence of vertices $\left(v_{0}, \ldots, v_{h}\right)$ such that vertex v_{i} is the leftmost/rightmost vertex at depth i

Implementation: Overlapping rectangles

The left/right contour of leveled tree drawing
The left/right contour of a leveled tree drawing of height h is the sequence of vertices $\left(v_{0}, \ldots, v_{h}\right)$ such that vertex v_{i} is the leftmost/rightmost vertex at depth i

Implementation: Overlapping rectangles

The left/right contour of leveled tree drawing
The left/right contour of a leveled tree drawing of height h is the sequence of vertices $\left(v_{0}, \ldots, v_{h}\right)$ such that vertex v_{i} is the leftmost/rightmost vertex at depth i

Implementation: Overlapping rectangles

The left/right contour of leveled tree drawing
The left/right contour of a leveled tree drawing of height h is the sequence of vertices $\left(v_{0}, \ldots, v_{h}\right)$ such that vertex v_{i} is the leftmost/rightmost vertex at depth i

Implementation: Overlapping rectangles

The left/right contour of leveled tree drawing
The left/right contour of a leveled tree drawing of height h is the sequence of vertices $\left(v_{0}, \ldots, v_{h}\right)$ such that vertex v_{i} is the leftmost/rightmost vertex at depth i

Implementation: Overlapping rectangles

The left/right contour of leveled tree drawing
The left/right contour of a leveled tree drawing of height h is the sequence of vertices $\left(v_{0}, \ldots, v_{h}\right)$ such that vertex v_{i} is the leftmost/rightmost vertex at depth i

Implementation: Overlapping rectangles

The left/right contour of leveled tree drawing
The left/right contour of a leveled tree drawing of height h is the sequence of vertices $\left(v_{0}, \ldots, v_{h}\right)$ such that vertex v_{i} is the leftmost/rightmost vertex at depth i

Implementation: Overlapping rectangles

The left/right contour of leveled tree drawing
The left/right contour of a leveled tree drawing of height h is the sequence of vertices $\left(v_{0}, \ldots, v_{h}\right)$ such that vertex v_{i} is the leftmost/rightmost vertex at depth i

Implementation: Overlapping rectangles

The left/right contour of leveled tree drawing
The left/right contour of a leveled tree drawing of height h is the sequence of vertices $\left(v_{0}, \ldots, v_{h}\right)$ such that vertex v_{i} is the leftmost/rightmost vertex at depth i

Implementation: Overlapping rectangles

The left/right contour of leveled tree drawing
The left/right contour of a leveled tree drawing of height h is the sequence of vertices $\left(v_{0}, \ldots, v_{h}\right)$ such that vertex v_{i} is the leftmost/rightmost vertex at depth i

Implementation: Overlapping rectangles
Computation of the left contour of a tree rooted at u, given
-the left contours of its subtrees
-the heights of its subtress

Implementation: Overlapping rectangles

Computation of the left contour of a tree rooted at u, given
-the left contours of its subtrees
-the heights of its subtress
Case-1: $h\left(T_{u}^{L}\right)=h\left(T_{u}^{R}\right)$

Implementation: Overlapping rectangles

Computation of the left contour of a tree rooted at u, given
-the left contours of its subtrees
-the heights of its subtress
Case-1: $h\left(T_{u}^{L}\right)=h\left(T_{u}^{R}\right)$

O(1)-time

Implementation: Overlapping rectangles

Computation of the left contour of a tree rooted at u, given
-the left contours of its subtrees
-the heights of its subtress
Case-1: $h\left(T_{u}^{L}\right)=h\left(T_{u}^{R}\right)$
Case-2: $h\left(T_{u}^{L}\right)<h\left(T_{u}^{R}\right)$

$O(1)$-time

Implementation: Overlapping rectangles

Computation of the left contour of a tree rooted at u, given
-the left contours of its subtrees
-the heights of its subtress
Case-1: $h\left(T_{u}^{L}\right)=h\left(T_{u}^{R}\right)$
Case-2: $h\left(T_{u}^{L}\right)<h\left(T_{u}^{R}\right)$

$O(1)$-time

Implementation: Overlapping rectangles

Computation of the left contour of a tree rooted at u, given
-the left contours of its subtrees
-the heights of its subtress
Case-1: $h\left(T_{u}^{L}\right)=h\left(T_{u}^{R}\right)$
Case-2: $h\left(T_{u}^{L}\right)<h\left(T_{u}^{R}\right)$

$O(1)$-time

Implementation: Overlapping rectangles

Computation of the left contour of a tree rooted at u, given
-the left contours of its subtrees
-the heights of its subtress
Case-1: $h\left(T_{u}^{L}\right)=h\left(T_{u}^{R}\right)$
Case-2: $h\left(T_{u}^{L}\right)<h\left(T_{u}^{R}\right)$

$O(1)$-time

$$
O\left(h\left(T_{u}^{L}\right)\right) \text {-time }
$$

[We traverse T_{u}^{L} and $T_{\mathcal{u}}^{R}$ simultaneously in order to identify vertex a of T_{u}^{R}]

Implementation: Overlapping rectangles

Computation of the left contour of a tree rooted at u, given
-the left contours of its subtrees
-the heights of its subtress
Case-1: $h\left(T_{u}^{L}\right)=h\left(T_{u}^{R}\right)$
Case-2: $h\left(T_{u}^{L}\right)<h\left(T_{u}^{R}\right)$
Case-3: $h\left(T_{u}^{L}\right)>h\left(T_{u}^{R}\right)$

$O(1)$-time

$O\left(h\left(T_{u}^{L}\right)\right)$-time
[We traverse $T_{\mathcal{u}}^{L}$ and $T_{\mathcal{u}}^{R}$ simultaneously in order to identify vertex a of T_{u}^{R}]

Implementation: Overlapping rectangles

Computation of the left contour of a tree rooted at u, given
-the left contours of its subtrees
-the heights of its subtress

Case-1: $h\left(T_{u}^{L}\right)=h\left(T_{u}^{R}\right)$

$O(1)$-time

Case-2: $h\left(T_{u}^{L}\right)<h\left(T_{u}^{R}\right)$

$$
O\left(h\left(T_{u}^{L}\right)\right) \text {-time }
$$

[We traverse $T_{\mathcal{u}}^{L}$ and $T_{\mathcal{u}}^{R}$ simultaneously in order to identify vertex a of T_{u}^{R}]

Case-3: $h\left(T_{u}^{L}\right)>h\left(T_{u}^{R}\right)$

$O(1)$-time

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

$$
C(T) \leq \sum_{u \in V(T)} 1+\min \left(h\left(T_{u}^{L}\right), h\left(T_{u}^{R}\right)\right)
$$

Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

$$
\begin{aligned}
C(T) & \leq \sum_{u \in V(T)} 1+\min \left(h\left(T_{u}^{L}\right), h\left(T_{u}^{R}\right)\right) \\
& =n+\sum_{u \in V(T)} \min \left(h\left(T_{u}^{L}\right), h\left(T_{u}^{R}\right)\right) \\
& <n+n \quad(\text { Lemma } 1) \\
& =2 n
\end{aligned}
$$

Thus, $C(T) \leq 2 n$

Implementation: Overlapping rectangles

Lemma 1: For each n-vertex binary tree it holds that:

$$
\sum_{u \in V(T)} \min \left(h\left(T_{u}^{L}\right), h\left(T_{u}^{R}\right)\right)<n
$$

Implementation: Overlapping rectangles

Lemma 1: For each n-vertex binary tree it holds that:

$$
\sum_{u \in V(T)} \min \left(h\left(T_{u}^{L}\right), h\left(T_{u}^{R}\right)\right)<n
$$

Proof:

\square The height of each subtree is equal to the length of the left/right contour

- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.

Implementation: Overlapping rectangles

Lemma 1: For each n-vertex binary tree it holds that:

$$
\sum_{u \in V(T)} \min \left(h\left(T_{u}^{L}\right), h\left(T_{u}^{R}\right)\right)<n
$$

Proof:

- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.

Implementation: Overlapping rectangles

Lemma 1: For each n-vertex binary tree it holds that:

$$
\sum_{u \in V(T)} \min \left(h\left(T_{u}^{L}\right), h\left(T_{u}^{R}\right)\right)<n
$$

Proof:

- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.

Implementation: Overlapping rectangles

Lemma 1: For each n-vertex binary tree it holds that:

$$
\sum_{u \in V(T)} \min \left(h\left(T_{u}^{L}\right), h\left(T_{u}^{R}\right)\right)<n
$$

Proof:

\square The height of each subtree is equal to the length of the left/right contour

- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.

Implementation: Overlapping rectangles

Lemma 1: For each n-vertex binary tree it holds that:

$$
\sum_{u \in V(T)} \min \left(h\left(T_{u}^{L}\right), h\left(T_{u}^{R}\right)\right)<n
$$

Proof:

■ The height of each subtree is equal to the length of the left/right contour

- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.

Implementation: Overlapping rectangles

Lemma 1: For each n-vertex binary tree it holds that:

$$
\sum_{u \in V(T)} \min \left(h\left(T_{u}^{L}\right), h\left(T_{u}^{R}\right)\right)<n
$$

Proof:

■ The height of each subtree is equal to the length of the left/right contour

- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.

Implementation: Overlapping rectangles

Lemma 1: For each n-vertex binary tree it holds that:

$$
\sum_{u \in V(T)} \min \left(h\left(T_{u}^{L}\right), h\left(T_{u}^{R}\right)\right)<n
$$

Proof:

- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.
- We can charge each connection to the vertex at its left endpoint

\square Observe that we have at most one connection out of the right side of each vertex. Thus, at most n connections.

Level-based layout - result

```
Theorem. (Reingold \& Tilford '81)
Let \(T\) be a binary tree with \(n\) vertices. We can construct a drawing \(\Gamma\) of \(T\) in \(\mathcal{O}(n)\) time, such that:
```


Level-based layout - result

Theorem. (Reingold \& Tilford '81)

Let T be a binary tree with n vertices. We can construct a drawing Γ of T in $\mathcal{O}(n)$ time, such that:
$\square \Gamma$ is planar, straight-line and strictly downward
\square is leveled: y-coordinate of vertex v is $-\operatorname{depth}(v)$

- Vertical and horizontal distances are at least 1
- Each vertex is centred wrt its children

Level-based layout - result

Theorem. (Reingold \& Tilford '81)

Let T be a binary tree with n vertices. We can construct a drawing Γ of T in $\mathcal{O}(n)$ time, such that:
$\square \Gamma$ is planar, straight-line and strictly downward
\square is leveled: y-coordinate of vertex v is $-\operatorname{depth}(v)$

- Vertical and horizontal distances are at least 1
- Each vertex is centred wrt its children
- Area of Γ is in $\mathcal{O}\left(n^{2}\right)$

Level-based layout - result

Theorem. (Reingold \& Tilford '81)

Let T be a binary tree with n vertices. We can construct a drawing Γ of T in $\mathcal{O}(n)$ time, such that:
$\square \Gamma$ is planar, straight-line and strictly downward
\square is leveled: y-coordinate of vertex v is $-\operatorname{depth}(v)$

- Vertical and horizontal distances are at least 1
- Each vertex is centred wrt its children
- Area of Γ is in $\mathcal{O}\left(n^{2}\right)$
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic trees have congruent drawings, up to translation and reflection around y-axis

Level-based layout - result

Level-based layout - area

- Presented algorithm tries to minimise width
■ Does not always achieve that!

Level-based layout - area

- Presented algorithm tries to minimise width
- Does not always achieve that!

Level-based layout - area

- Presented algorithm tries to minimise width
- Does not always achieve that!

Level-based layout - area

- Presented algorithm tries to minimise width
- Does not always achieve that!
- Divide-and-conquer strategy cannot achieve optimal width

Suboptimal structure leads to better drawing

Level-based layout - area

- Presented algorithm tries to minimise width
■ Does not always achieve that!

Suboptimal structure leads to better drawing

- Divide-and-conquer strategy cannot achieve optimal width

- Drawing with min width (but without the grid) can be constructed by an LP

Level-based layout - area

- Presented algorithm tries to minimise width
■ Does not always achieve that!

Suboptimal structure leads to better drawing

- Divide-and-conquer strategy cannot achieve optimal width

- Drawing with min width (but without the grid) can be constructed by an LP
- Problem is NP-hard on grid

Drawing-style: hv-drawings

Applications

- Cons cell diagram in LISP

■ Cons(constructs) are memory objects which hold two values or pointers to values

Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing-style: hv-drawings

Applications

- Cons cell diagram in LISP
- Cons(constructs) are memory objects which hold two values or pointers to values

Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing-style: hv-drawings

Applications

Drawing conventions

- Cons cell diagram in LISP
- Cons(constructs) are memory objects which hold two values or pointers to values

Drawing aesthetics

Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing-style: hv-drawings

Applications

- Cons cell diagram in LISP

■ Cons(constructs) are memory objects which hold two values or pointers to values

Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

- Children are vertically and horizontally aligned with their parent

Drawing-style: hv-drawings

Applications

■ Cons cell diagram in LISP

- Cons(constructs) are memory objects which hold two values or pointers to values

Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

- Children are vertically and horizontally aligned with their parent
- The bounding boxes of the subtrees of the children are disjoint

Drawing aesthetics

Drawing-style: hv-drawings

Applications

- Cons cell diagram in LISP
- Cons(constructs) are memory objects which hold two values or pointers to values

Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

- Children are vertically and horizontally aligned with their parent
- The bounding boxes of the subtrees of the children are disjoint

Drawing aesthetics

- Height, width, area
hv-drawings - algorithm
Input: A binary tree T
Output: A hv-drawing of T

Base case:

Divide: Recursively apply the algorithm to draw the left and right subtrees

Conquer:

hv-drawings - algorithm
Input: A binary tree T
Output: A hv-drawing of T

Base case:

Divide: Recursively apply the algorithm to draw the left and right subtrees

Conquer:

hv-drawing - right-heavy hv-layout

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right

■ Size of subtree $:=$ number of vertices

hv-drawing - right-heavy hv-layout

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right

■ Size of subtree $:=$ number of vertices

hv-drawing - right-heavy hv-layout

Right-heavy approach

■ Always apply horizontal combination

- Place the larger subtree to the right

■ Size of subtree $:=$ number of vertices

hv-drawing - right-heavy hv-layout

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right

■ Size of subtree $:=$ number of vertices

hv-drawing - right-heavy hv-layout

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right

■ Size of subtree $:=$ number of vertices

hv-drawing - right-heavy hv-layout

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right

■ Size of subtree $:=$ number of vertices

hv-drawing - right-heavy hv-layout

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right

■ Size of subtree $:=$ number of vertices

hv-drawing - right-heavy hv-layout

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right

■ Size of subtree $:=$ number of vertices

Lemma. Let T be a binary tree. The drawing constructed by the right-heavy approach has
width at most and
height at most
hv-drawing - right-heavy hv-layout

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right

■ Size of subtree $:=$ number of vertices

Lemma. Let T be a binary tree. The drawing constructed by the right-heavy approach has
width at most $n-1$ and
height at most
hv-drawing - right-heavy hv-layout

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right

■ Size of subtree $:=$ number of vertices

Lemma. Let T be a binary tree. The drawing constructed by the right-heavy approach has
width at most $n-1$ and
height at most
hv-drawing - right-heavy hv-layout

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right

■ Size of subtree $:=$ number of vertices

Lemma. Let T be a binary tree. The drawing constructed by the right-heavy approach has
width at most $n-1$ and
height at most

hv-drawing - right-heavy hv-layout

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right

■ Size of subtree $:=$ number of vertices

```
at least ·2
```


Lemma. Let T be a binary tree. The drawing constructed by the right-heavy approach has
width at most $n-1$ and
height at most

hv-drawing - right-heavy hv-layout

Right-heavy approach

■ Always apply horizontal combination

- Place the larger subtree to the right

■ Size of subtree $:=$ number of vertices

```
at least ·2
```


Lemma. Let T be a binary tree. The drawing constructed by the right-heavy approach has
width at most $n-1$ and
height at most

hv-drawing - right-heavy hv-layout

Right-heavy approach

■ Always apply horizontal combination

- Place the larger subtree to the right

■ Size of subtree $:=$ number of vertices
at least $\cdot 2$

Lemma. Let T be a binary tree. The drawing constructed by the right-heavy approach has
width at most $n-1$ and
height at most

hv-drawing - right-heavy hv-layout

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right

■ Size of subtree $:=$ number of vertices
at least $\cdot 2$
at least $\cdot 2$

Lemma. Let T be a binary tree. The drawing constructed by the right-heavy approach has
width at most $n-1$ and
height at most

hv-drawing - right-heavy hv-layout

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right
- Size of subtree $:=$ number of vertices
at least $\cdot 2$
at least $\cdot 2$

Lemma. Let T be a binary tree. The drawing constructed by the right-heavy approach has
width at most $n-1$ and
height at most

hv-drawing - right-heavy hv-layout

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right
- Size of subtree $:=$ number of vertices
at least $\cdot 2$ at least $\cdot 2$ at least $\cdot 2$

Lemma. Let T be a binary tree. The drawing constructed by the right-heavy approach has
width at most $n-1$ and
height at most

hv-drawing - right-heavy hv-layout

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right
- Size of subtree $:=$ number of vertices
at least $\cdot 2$ at least $\cdot 2$ at least $\cdot 2$

Lemma. Let T be a binary tree. The drawing constructed by the right-heavy approach has
width at most $n-1$ and
\square height at most $\log n$.

hv-drawing - right-heavy hv-layout

Right-heavy approach

- Always apply horizontal combination

How to implement this in linear time?

- Place the larger subtree to the right

■ Size of subtree $:=$ number of vertices
at least $\cdot 2$ at least $\cdot 2$ at least $\cdot 2$

Lemma. Let T be a binary tree. The drawing constructed by the right-heavy approach has width at most $n-1$ and
\square height at most $\log n$.

Computing right-heavy hv-layout in linear time

- At each node u we store the 5 -tuple:

$$
u:\left(x_{u}, y_{u}, W_{u}, H_{u}, s_{u}\right)
$$

where:

- x_{u}, y_{u} are the x and y coordinates of u

Computing right-heavy hv-layout in linear time

- At each node u we store the 5-tuple:

$$
u:\left(x_{u}, y_{u}, W_{u}, H_{u}, s_{u}\right)
$$

where:

- x_{u}, y_{u} are the x and y coordinates of u

Computing right-heavy hv-layout in linear time

- At each node u we store the 5-tuple:

$$
u:\left(x_{u}, y_{u}, W_{u}, H_{u}, s_{u}\right)
$$

where:

- x_{u}, y_{u} are the x and y coordinates of u
- W_{u} is the width of the layout of subtree T_{u}
- H_{u} is the height of the layout of subtree T_{u}
- s_{u} is the size of T_{u}

Computing right-heavy hv-layout in linear time

■ Compute in a bottom-up fashion (by a post-order traversal) s_{u}, W_{u} and H_{u}

Computing right-heavy hv-layout in linear time

■ Compute in a bottom-up fashion (by a post-order traversal) s_{u}, W_{u} and H_{u}
$u: \quad s_{u}=s_{v}+s_{w}+1$

Computing right-heavy hv-layout in linear time

■ Compute in a bottom-up fashion (by a post-order traversal) s_{u}, W_{u} and H_{u}
$u: \quad s_{u}=s_{v}+s_{w}+1$

- if $\left(s_{v}<s_{w}\right)$ $H_{u}=\max \left(H_{v}+1, H_{w}\right)$

else
$H_{u}=\max \left(H_{w}+1, H_{v}\right)$

Computing right-heavy hv-layout in linear time

■ Compute in a bottom-up fashion (by a post-order traversal) s_{u}, W_{u} and H_{u}
$u: \quad s_{u}=s_{v}+s_{w}+1$

- if $\left(s_{v}<s_{w}\right)$ $H_{u}=\max \left(H_{v}+1, H_{w}\right)$
 else
$H_{u}=\max \left(H_{w}+1, H_{v}\right)$ $\xrightarrow{\longrightarrow}$

- $W_{u}=W_{v}+W_{w}+1$

Computing right-heavy hv-layout in linear time

- Compute in a top-down fashion (by a pre-order traversal) x_{u} and y_{u}

Computing right-heavy hv-layout in linear time

- Compute in a top-down fashion (by a pre-order traversal) x_{u} and y_{u}

$$
r: \quad \bullet x_{r}=0, \quad y_{r}=0
$$

$r_{\bullet}(0,0)$

Computing right-heavy hv-layout in linear time

- Compute in a top-down fashion (by a pre-order traversal) x_{u} and y_{u}

$$
r: \quad \bullet x_{r}=0, \quad y_{r}=0
$$

u:

- For subtree rooted at v and placed below u :

$$
\begin{aligned}
& x_{v}=x_{u} \\
& y_{v}=y_{u}-1
\end{aligned}
$$

- For subtree rooted at w and placed to the right of u :

$$
\begin{aligned}
& x_{w}=x_{u}+W_{v}+1 \\
& y_{w}=y_{u}
\end{aligned}
$$

Computing right-heavy hv-layout in linear time

- Compute in a top-down fashion (by a pre-order traversal) x_{u} and y_{u}

$$
r: \quad \bullet x_{r}=0, \quad y_{r}=0
$$

u : \quad For subtree rooted at v and placed below u :

$$
\begin{aligned}
& x_{v}=x_{u} \\
& y_{v}=y_{u}-1
\end{aligned}
$$

- For subtree rooted at w and placed to the right of u :

$$
\begin{aligned}
& x_{w}=x_{u}+W_{v}+1 \\
& y_{w}=y_{u}
\end{aligned}
$$

Total time: $O(n)$

hv-drawing - result (1)

Theorem.

Let T be a binary tree with n vertices. The right-heavy algorithm constructs in $O(n)$ time a drawing Γ of T s.t.:

- Γ is hv-drawing (planar, orthogonal)
- Width is at most $n-1$
- Height is at most $\log n$
- Area is in $\mathcal{O}(n \log n)$

hv-drawing - result (1)

Theorem.

Let T be a binary tree with n vertices. The right-heavy algorithm constructs in $O(n)$ time a drawing Γ of T s.t.:
$\square \Gamma$ is hv-drawing (planar, orthogonal)

- Width is at most $n-1$
- Height is at most $\log n$
- Area is in $\mathcal{O}(n \log n)$
- Simply and axially isomorphic subtrees have congruent drawings up to translation

hv-drawing - result (1)

Theorem.

Let T be a binary tree with n vertices. The right-heavy algorithm constructs in $O(n)$ time a drawing Γ of T s.t.:
$\square \Gamma$ is hv-drawing (planar, orthogonal)

- Width is at most $n-1$
- Height is at most $\log n$
- Area is in $\mathcal{O}(n \log n)$
- Simply and axially isomorphic subtrees have congruent drawings up to translation

Bad aspect ratio $\Omega(n / \log n)$

hv-drawing - result (1)

Theorem.

Let T be a binary tree with n vertices. The right-heavy algorithm constructs in $O(n)$ time a drawing Γ of T s.t.:

- Γ is hv-drawing (planar, orthogonal)
- Width is at most $n-1$
- Height is at most $\log n$
- Area is in $\mathcal{O}(n \log n)$
- Simply and axially isomorphic subtrees have congruent drawings up to translation

General rooted tree

hv-drawing - balanced layout

Balanced approach

- Recursively compute layout for left and right subtrees
- Apply
- horizontal combination if vertex is at odd depth
- vertical combination if vertex is at even depth

hv-drawing - balanced layout

Balanced approach

■ Recursively compute layout for left and right subtrees

- Apply
- horizontal combination if vertex is at odd depth
- vertical combination if vertex is at even depth

hv-drawing - balanced layout

Balanced approach

- Recursively compute layout for left and right subtrees
- Apply
- horizontal combination if vertex is at odd depth
- vertical combination if vertex is at even depth

hv-drawing - balanced layout

Balanced approach

■ Recursively compute layout for left and right subtrees

- Apply
- horizontal combination if vertex is at odd depth
- vertical combination if vertex is at even depth

hv-drawing - balanced layout

Balanced approach

■ Recursively compute layout for left and right subtrees

- Apply
- horizontal combination if vertex is at odd depth
- vertical combination if vertex is at even depth

hv-drawing - balanced layout

Balanced approach

- Recursively compute layout for left and right subtrees
- Apply
- horizontal combination if vertex is at odd depth
- vertical combination if vertex is at even depth

hv-drawing - balanced layout

Balanced approach

■ Recursively compute layout for left and right subtrees

- Apply
- horizontal combination if vertex is at odd depth
- vertical combination if vertex is at even depth

hv-drawing - balanced layout

Balanced approach

- Recursively compute layout for left and right subtrees
- Apply
- horizontal combination if vertex is at odd depth
- vertical combination if vertex is at even depth

hv-drawing - balanced layout

Balanced approach

- Recursively compute layout for left and right subtrees
- Apply
- horizontal combination if vertex is at odd depth
- vertical combination if vertex is at even depth

hv-drawing - balanced layout

Balanced approach

■ Recursively compute layout for left and right subtrees

- Apply
- horizontal combination if vertex is at odd depth
- vertical combination if vertex is at even depth

hv-drawing - balanced layout

Balanced approach

■ Recursively compute layout for left and right subtrees

- Apply
- horizontal combination if vertex is at odd depth
- vertical combination if vertex is at even depth

hv-drawing - balanced layout

Balanced approach

■ Recursively compute layout for left and right subtrees

- Apply
- horizontal combination if vertex is at odd depth
- vertical combination if vertex is at even depth $\rightarrow 0$

hv-drawing - balanced layout

Balanced approach

- Recursively compute layout for left and right subtrees
- Apply
- horizontal combination if vertex is at odd depth
- vertical combination if vertex is at even depth

hv-drawing - balanced layout

Balanced approach

- Recursively compute layout for left and right subtrees
- Apply
- horizontal combination if vertex is at odd depth
\square vertical combination if vertex is at even depth

hv-drawing - balanced layout

Lemma. Let T be a binary tree. The drawing constructed by balanced approach has

- area $\mathcal{O}(n)$ and
- constant aspect ratio

hv-drawing - balanced layout

Lemma. Let T be a binary tree. The drawing constructed by balanced approach has

- area $\mathcal{O}(n)$ and
- constant aspect ratio
hv-drawing - balanced layout

Lemma. Let T be a binary tree. The drawing constructed by balanced approach has

- area $\mathcal{O}(n)$ and
- constant aspect ratio
even height: $h=2 k$

$$
W_{h}, H_{h}
$$

Base case: $h=0$
$W_{0}=0, H_{0}=0$
hv-drawing - balanced layout
Lemma. Let T be a binary tree. The drawing constructed by balanced approach has

- area $\mathcal{O}(n)$ and
- constant aspect ratio
even height: $h=2 k$

$$
W_{h}, H_{h}
$$

■ compute W_{h+1}, H_{h+1}
hv-drawing - balanced layout

Lemma. Let T be a binary tree. The drawing constructed by balanced approach has

- area $\mathcal{O}(n)$ and
- constant aspect ratio
even height: $h=2 k$

$$
W_{h}, H_{h}
$$

- compute W_{h+1}, H_{h+1}

$W_{0}=0, H_{0}=0$

hv-drawing - balanced layout

Lemma. Let T be a binary tree. The drawing constructed by balanced approach has

- area $\mathcal{O}(n)$ and
- constant aspect ratio
even height: $h=2 k$

$$
W_{h}, H_{h}
$$

- compute W_{h+1}, H_{h+1}

Base case: $h=0$
$W_{0}=0, H_{0}=0$

hv-drawing - balanced layout

Lemma. Let T be a binary tree. The drawing constructed by balanced approach has

- area $\mathcal{O}(n)$ and
- constant aspect ratio
even height: $h=2 k$

$$
W_{h}, H_{h}
$$

- compute W_{h+1}, H_{h+1}
$W_{h+1}=2 W_{h}+1$
$H_{h+1}=H_{h}+1$

$W_{0}=0, H_{0}=0$

hv-drawing - balanced layout

Lemma. Let T be a binary tree. The drawing constructed by balanced approach has

- area $\mathcal{O}(n)$ and

$$
W_{0}=0, H_{0}=0
$$

- constant aspect ratio
even height: $h=2 k$
- compute W_{h+1}, H_{h+1}

$$
\begin{aligned}
& W_{h+2}=W_{h+1}+1 \\
& H_{h+2}=2 H_{h+1}+1
\end{aligned}
$$

$$
W_{h}, H_{h}
$$

$W_{h+1}=2 W_{h}+1$
$H_{h+1}=H_{h}+1$

hv-drawing - balanced layout

Lemma. Let T be a binary tree. The drawing constructed by balanced approach has

- area $\mathcal{O}(n)$ and
- constant aspect ratio
even height: $h=2 k \quad W_{h+2}=2 W_{h}+2$

$$
W_{h}, H_{h} \quad H_{h+2}=2 H_{h}+3
$$

Base case: $h=0$
$W_{0}=0, H_{0}=0$

hv-drawing - balanced layout

Lemma. Let T be a binary tree. The drawing constructed by balanced approach has

- area $\mathcal{O}(n)$ and
- constant aspect ratio
even height: $h=2 k \quad W_{h+2}=2 W_{h}+2$

$$
W_{h}, H_{h}
$$

$$
H_{h+2}=2 H_{h}+3
$$

$$
W_{h}=2\left(2^{h / 2}-1\right) \quad \rightarrow \quad W_{h}=2 \sqrt{n}-2
$$

$$
H_{h}=3\left(2^{h / 2}-1\right)
$$

$$
H_{h}=3 \sqrt{n}-3
$$

$$
W_{0}=0, H_{0}=0
$$

hv-drawing - balanced layout

Lemma. Let T be a binary tree. The drawing constructed by balanced approach has

- area $\mathcal{O}(n)$ and
- constant aspect ratio
even height: $h=2 k$

$$
W_{h}, H_{h}
$$

$$
\begin{aligned}
& W_{h+2}=2 W_{h}+2 \\
& H_{h+2}=2 H_{h}+3
\end{aligned}
$$

$$
W_{h}=2\left(2^{h / 2}-1\right) \quad \rightarrow \quad W_{h}=2 \sqrt{n}-2
$$

$$
H_{h}=3\left(2^{h / 2}-1\right)
$$

$$
H_{h}=3 \sqrt{n}-3
$$

odd height: $h=2 k+1$

$$
W_{h+2}=2 W_{h}+3
$$

$$
W_{h}, H_{h}
$$

$$
H_{h+2}=2 H_{h}+2
$$

$$
\longrightarrow \quad \begin{aligned}
& W_{h}=2 \sqrt{2 n}-3 \\
& H_{h}=\frac{3}{2} \sqrt{2 n}-2
\end{aligned}
$$

```
Theorem.
Let T be a binary tree with n}\mathrm{ vertices. The balanced
algorithm constructs in O(n) time a drawing }\Gamma\mathrm{ of T
s.t.:
\Gamma is hv-drawing (planar, orthogonal)
\square Width/Height is at most 2
- Area is in O(n)
```


hv-drawing - result (2)

Theorem.

Let T be a binary tree with n vertices. The balanced algorithm constructs in $O(n)$ time a drawing Γ of T
s.t.:

Γ is hv-drawing (planar, orthogonal)

- Width/Height is at most 2
- Area is in $\mathcal{O}(n)$
- Isomorphic subtrees have congruent drawings up to translation only if the roots are both on odd or both on even depth.

hv-drawing - result (2)

Theorem.

Let T be a binary tree with n vertices. The balanced algorithm constructs in $O(n)$ time a drawing Γ of T

s.t.:
\square is hv-drawing (planar, orthogonal)

- Width/Height is at most 2
- Area is in $\mathcal{O}(n)$
- Isomorphic subtrees have congruent drawings up to translation only if the roots are both on odd or both on even depth.

Optimal area?

- Not with divide \& conquer approach, but

■ can be computed with Dynamic Programming.

Optimum hv-layout for binary trees

- Possible arrangements:

(1)

(2)

(3)

(4)

(5)

(6) u has only one child
w to the right of u v to the right of u

Optimum hv-layout for binary trees

Algorithm Optimum_hv-layout

Input: Vertex v
Output: A list with all possible hv-layouts for T_{v}
If $\left.h\left(T_{v}\right)==0\right) . \quad-v$ is the only vertex in the tree
return trivial single vertex hv-layout
else

1. Build lists L_{1} and L_{2} of all possible hv-layouts of T_{u}^{L} and T_{u}^{R}, resp.
2. Combine L_{1} and L_{2} (by applying all possible arrangements) to build list L of all possible hv-layouts for T_{v}
3. return L

Optimum hv-layout for binary trees

Algorithm Optimum_hv-layout

Input: Vertex v
Output: A list with all possible hv-layouts for T_{v}
If $\left.h\left(T_{v}\right)==0\right) . \quad-v$ is the only vertex in the tree
return trivial single vertex hv-layout
else

1. Build lists L_{1} and L_{2} of all possible hv-layouts of T_{u}^{L} and T_{u}^{R}, resp.
2. Combine L_{1} and L_{2} (by applying all possible arrangements) to build list L of all possible hv-layouts for T_{v}
3. return L
\square From the list at the root of the tree, select the optimum hv-layout.
Optimum w.r.t.: area, perimeter, height, width, ...

Optimum hv-layout for binary trees

Obervation 1: The number of possible hv-layouts is exponential

Optimum hv-layout for binary trees

Obervation 1: The number of possible hv-layouts is exponential
Obervation 2: The number of possible enclosing rectangles is at most n^{2} [n possible different heights and n possible different widths]

Optimum hv-layout for binary trees

Obervation 1: The number of possible hv-layouts is exponential
Obervation 2: The number of possible enclosing rectangles is at most n^{2} [n possible different heights and n possible different widths]

Obervation 3: We only need to keep the enclosing rectangles that are not fully covered by other enclosing rectangles. We refer to them as atoms.

Optimum hv-layout for binary trees

Obervation 1: The number of possible hv-layouts is exponential
Obervation 2: The number of possible enclosing rectangles is at most n^{2} [n possible different heights and n possible different widths]

Obervation 3: We only need to keep the enclosing rectangles that are not fully covered by other enclosing rectangles. We refer to them as atoms.

Lemma: For an n-vertex binary tree we have at most $n-1$ atoms.

Optimum hv-layout for binary trees

Obervation 1: The number of possible hv-layouts is exponential
Obervation 2: The number of possible enclosing rectangles is at most n^{2} [n possible different heights and n possible different widths]

Obervation 3: We only need to keep the enclosing rectangles that are not fully covered by other enclosing rectangles. We refer to them as atoms.

Lemma: For an n-vertex binary tree we have at most $n-1$ atoms.
Proof: Observe that:
■ Let each atom be of the form $[w \times h]$.
\square There is only one atom for each $w, 0 \leq w \leq n-1$.

Optimum hv-layout for binary trees

Time Analysis:

1. Simple implementation:

Combining the n^{2} rectangles in each of L_{1} and L_{2} to get a list of n^{4} rectangles. $\Rightarrow O\left(n^{4}\right)$ time
\square Remove duplicate rectangles $\Rightarrow O\left(n^{4}\right)$ time

- Repeat for each internal tree node $\Rightarrow O\left(n \cdot n^{4}\right)=O\left(n^{5}\right)$ total time

Optimum hv-layout for binary trees

Time Analysis:

1. Simple implementation:

Combining the n^{2} rectangles in each of L_{1} and L_{2} to get a list of n^{4} rectangles.
$\Rightarrow O\left(n^{4}\right)$ time

- Remove duplicate rectangles $\Rightarrow O\left(n^{4}\right)$ time

Repeat for each internal tree node $\Rightarrow O\left(n \cdot n^{4}\right)=O\left(n^{5}\right)$ total time
2. Implementation based on "atom-only" lists [Observation-3]

- Combine the n atoms in each of L_{1} and L_{2} and remove duplicates $\Rightarrow O\left(n^{2}\right)$ time
\square Repeat for each internal tree node $\Rightarrow O\left(n \cdot n^{2}\right)=O\left(n^{3}\right)$ total time

Optimum hv-layout for binary trees

Time Analysis:

1. Simple implementation:

Combining the n^{2} rectangles in each of L_{1} and L_{2} to get a list of n^{4} rectangles.
$\Rightarrow O\left(n^{4}\right)$ time

- Remove duplicate rectangles $\Rightarrow O\left(n^{4}\right)$ time

Repeat for each internal tree node $\Rightarrow O\left(n \cdot n^{4}\right)=O\left(n^{5}\right)$ total time
2. Implementation based on "atom-only" lists [Observation-3]

- Combine the n atoms in each of L_{1} and L_{2} and remove duplicates $\Rightarrow O\left(n^{2}\right)$ time
\square Repeat for each internal tree node $\Rightarrow O\left(n \cdot n^{2}\right)=O\left(n^{3}\right)$ total time

3. Fast "atom-based" implementation

- Combine the n atoms in each of L_{1} and L_{2} and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time
\square Repeat for each internal tree node $\Rightarrow O(n \cdot n)=O\left(n^{2}\right)$ total time

Optimum hv-layout for binary trees

Time Analysis:
2. Implementation based on "atom-only" lists [Observation-3]
\square Combine the n atoms in each of L_{1} and L_{2} and remove duplicates $\Rightarrow O\left(n^{2}\right)$ time
\square Repeat for each internal tree node $\Rightarrow O\left(n \cdot n^{2}\right)=O\left(n^{3}\right)$ total time

Optimum hv-layout for binary trees

Time Analysis:
2. Implementation based on "atom-only" lists [Observation-3]

Combine the n atoms in each of L_{1} and L_{2} and remove duplicates $\Rightarrow O\left(n^{2}\right)$ time

- Repeat for each internal tree node $\Rightarrow O\left(n \cdot n^{2}\right)=O\left(n^{3}\right)$ total time
atoms: array of length n atoms $[i]=$ atom with length i
\square for each combination of L_{1} and L_{2} update array of atoms

Optimum hv-layout for binary trees

Time Analysis:
2. Implementation based on "atom-only" lists [Observation-3]

- Combine the n atoms in each of L_{1} and L_{2} and remove duplicates $\Rightarrow O\left(n^{2}\right)$ time

Repeat for each internal tree node $\Rightarrow O\left(n \cdot n^{2}\right)=O\left(n^{3}\right)$ total time
atoms: array of length n atoms $[i]=$ atom with length i
\square for each combination of L_{1} and L_{2} update array of atoms

Obervation: width is increasing $w_{i}<w_{j}$ height is decreasing $h_{i}>h_{j}$

Optimum hv-layout for binary trees

Time Analysis:
3. Fast "atom-based" implementation

- Combine the n atoms in each of L_{1} and L_{2} and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time
- Repeat for each internal tree node $\Rightarrow O(n \cdot n)=O\left(n^{2}\right)$ total time

Optimum hv-layout for binary trees

Time Analysis:
3. Fast "atom-based" implementation

Combine the n atoms in each of L_{1} and L_{2} and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time

- Repeat for each internal tree node $\Rightarrow O(n \cdot n)=O\left(n^{2}\right)$ total time

$$
\begin{aligned}
& a_{L}:\left\{p_{0}, \ldots, p_{k}\right\}, p_{i}=\left(w_{i}, h_{i}\right) \\
& a_{R}:\left\{q_{0}, \ldots, q_{\ell}\right\}, q_{j}=\left(w_{j}^{\prime}, h_{j}^{\prime}\right)
\end{aligned}
$$

Optimum hv-layout for binary trees

Time Analysis:
3. Fast "atom-based" implementation

- Combine the n atoms in each of L_{1} and L_{2} and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time
\square Repeat for each internal tree node $\Rightarrow O(n \cdot n)=O\left(n^{2}\right)$ total time

$$
\begin{aligned}
& a_{L}:\left\{p_{0}, \ldots, p_{k}\right\}, p_{i}=\left(w_{i}, h_{i}\right) \\
& a_{R}:\left\{q_{0}, \ldots, q_{\ell}\right\}, q_{j}=\left(w_{j}^{\prime}, h_{j}^{\prime}\right)
\end{aligned}
$$

combination $c\left(p_{i}, q_{j}\right)$:
$\square W=w_{i}+w_{j}^{\prime}+1$
■ $H=\max \left\{h_{i}+1, h_{j}^{\prime}\right\}$

Optimum hv-layout for binary trees

Time Analysis:
3. Fast "atom-based" implementation

- Combine the n atoms in each of L_{1} and L_{2} and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time
\square Repeat for each internal tree node $\Rightarrow O(n \cdot n)=O\left(n^{2}\right)$ total time

$$
\begin{aligned}
& a_{L}:\left\{p_{0}, \ldots, p_{k}\right\}, p_{i}=\left(w_{i}, h_{i}\right) \\
& a_{R}:\left\{q_{0}, \ldots, q_{\ell}\right\}, q_{j}=\left(w_{j}^{\prime}, h_{j}^{\prime}\right)
\end{aligned}
$$

combination $c\left(p_{i}, q_{j}\right)$:
$\square W=w_{i}+w_{j}^{\prime}+1$

- $H=\max \left\{h_{i}+1, h_{j}^{\prime}\right\}$

For fixed $p_{i}=\left(w_{i}, h_{i}\right)$

- W is increasing
$\square H=\left\{\begin{array}{l}h_{j}^{\prime}, \text { for } h_{j}^{\prime}>h_{i}+1 \\ h_{i}, \text { for } h_{j}^{\prime} \leq h_{i}+1\end{array}\right.$

Optimum hv-layout for binary trees

Time Analysis:
3. Fast "atom-based" implementation

Combine the n atoms in each of L_{1} and L_{2} and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time
\square Repeat for each internal tree node $\Rightarrow O(n \cdot n)=O\left(n^{2}\right)$ total time

$$
\begin{aligned}
& a_{L}:\left\{p_{0}, \ldots, p_{k}\right\}, p_{i}=\left(w_{i}, h_{i}\right) \\
& a_{R}:\left\{q_{0}, \ldots, q_{\ell}\right\}, q_{j}=\left(w_{j}^{\prime}, h_{j}^{\prime}\right)
\end{aligned}
$$

combination $c\left(p_{i}, q_{j}\right)$:
$\square W=w_{i}+w_{j}^{\prime}+1$
$\square H=\max \left\{h_{i}+1, h_{j}^{\prime}\right\}$

For fixed $p_{i}=\left(w_{i}, h_{i}\right)$

- W is increasing

Optimum hv-layout for binary trees

Time Analysis:
3. Fast "atom-based" implementation

Combine the n atoms in each of L_{1} and L_{2} and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time
\square Repeat for each internal tree node $\Rightarrow O(n \cdot n)=O\left(n^{2}\right)$ total time

$$
\begin{aligned}
& a_{L}:\left\{p_{0}, \ldots, p_{k}\right\}, p_{i}=\left(w_{i}, h_{i}\right) \\
& a_{R}:\left\{q_{0}, \ldots, q_{l}\right\}, q_{j}=\left(w_{j}^{\prime}, h_{j}^{\prime}\right)
\end{aligned}
$$

combination $c\left(p_{i}, q_{j}\right)$:
$\square W=w_{i}+w_{j}^{\prime}+1$

- $H=\max \left\{h_{i}+1, h_{j}^{\prime}\right\}$

For fixed $p_{i}=\left(w_{i}, h_{i}\right)$
\square There exists smallest $j(i)$ s.t. $h_{j(i)}^{\prime} \leq h_{i}+1$
■ atoms defined only for $j \leq j(i)$

- $j(i)$ is increasing
$\square c\left(p_{i^{\prime}>i}, q_{j}\right)$ enclosed by $c\left(p_{i}, q_{j}\right)$ for $j \leq j(i)$

Optimum hv-layout for binary trees

Time Analysis:
3. Fast "atom-based" implementation

- Combine the n atoms in each of L_{1} and L_{2} and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time
- Repeat for each internal tree node $\Rightarrow O(n \cdot n)=O\left(n^{2}\right)$ total time

Optimum hv-layout for binary trees

Time Analysis:
3. Fast "atom-based" implementation

- Combine the n atoms in each of L_{1} and L_{2} and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time
- Repeat for each internal tree node $\Rightarrow O(n \cdot n)=O\left(n^{2}\right)$ total time

Optimum hv-layout for binary trees

Time Analysis:
3. Fast "atom-based" implementation
\square Combine the n atoms in each of L_{1} and L_{2} and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time

- Repeat for each internal tree node $\Rightarrow O(n \cdot n)=O\left(n^{2}\right)$ total time

Optimum hv-layout for binary trees

Time Analysis:
3. Fast "atom-based" implementation

- Combine the n atoms in each of L_{1} and L_{2} and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time
- Repeat for each internal tree node $\Rightarrow O(n \cdot n)=O\left(n^{2}\right)$ total time
$0 \quad j(0) \quad j(1) \quad j(i) \quad j(i+1)$

Optimum hv-layout for binary trees

Time Analysis:
3. Fast "atom-based" implementation
\square Combine the n atoms in each of L_{1} and L_{2} and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time

- Repeat for each internal tree node $\Rightarrow O(n \cdot n)=O\left(n^{2}\right)$ total time
$0 \quad j(0) \quad j(1) \quad j(i) \quad j(i+1)$

Optimum hv-layout for binary trees

Time Analysis:
3. Fast "atom-based" implementation
\square Combine the n atoms in each of L_{1} and L_{2} and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time

- Repeat for each internal tree node $\Rightarrow O(n \cdot n)=O\left(n^{2}\right)$ total time

Optimum hv-layout for binary trees

Time Analysis:
3. Fast "atom-based" implementation

Combine the n atoms in each of L_{1} and L_{2} and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time

- Repeat for each internal tree node $\Rightarrow O(n \cdot n)=O\left(n^{2}\right)$ total time

Optimum hv-layout for binary trees

Time Analysis:
3. Fast "atom-based" implementation
\square Combine the n atoms in each of L_{1} and L_{2} and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time

- Repeat for each internal tree node $\Rightarrow O(n \cdot n)=O\left(n^{2}\right)$ total time combine1(atoms a_{L}, atoms a_{R})
$i \leftarrow 0$
$j \leftarrow 0$
while $i \leq k$ and $j \leq \ell$ do
compute combination
if $h_{j}^{\prime}>h_{i}+1$ then
$\leftarrow j+1$
else
$i \leftarrow i+1$

Radial layout - applications

Radial layout - applications

Flare Visualization Toolkit code structure by Heer, Bostock and Ogievetsky, 2010

Greek Myth Family by Ribecca, 2011

Radial layout - drawing style

Drawing conventions

- Vertices lie on circular layers according to their depth
- Drawing is planar

Drawing aesthetics

- Distribution of the vertices

Radial layout - drawing style

Drawing conventions

- Vertices lie on circular layers according to their depth
- Drawing is planar

Drawing aesthetics

- Distribution of the vertices

How may an algorithm optimise the distribution of the vertices?

Radial layout - algorithm attempt

Idea

- Angle corresponding to size $\ell(u)$ of $T(u)$:

$$
\tau_{u}=\frac{\ell(u)}{\ell(v)-1} \tau_{v}
$$

Radial layout - algorithm attempt

Idea

- Angle corresponding to size $\ell(u)$ of $T(u)$:

$$
\tau_{u}=\frac{\ell(u)}{\ell(v)-1} \tau_{v}
$$

Radial layout - algorithm attempt

Idea

- Angle corresponding to size $\ell(u)$ of $T(u)$:

$$
\tau_{u}=\frac{\ell(u)}{\ell(v)-1} \tau_{v}
$$

Radial layout - algorithm attempt

Idea

- Angle corresponding to size $\ell(u)$ of $T(u)$:

$$
\tau_{u}=\frac{\ell(u)}{\ell(v)-1} \tau_{v}
$$

Radial layout - algorithm attempt

Idea

- Angle corresponding to size $\ell(u)$ of $T(u)$:

$$
\tau_{u}=\frac{\ell(u)}{\ell(v)-1} \tau_{v}
$$

Radial layout - algorithm attempt

Idea

- Angle corresponding to size $\ell(u)$ of $T(u)$:

$$
\tau_{u}=\frac{\ell(u)}{\ell(v)-1} \tau_{v}
$$

Radial layout - algorithm attempt

Idea

- Angle corresponding to size $\ell(u)$ of $T(u)$:

$$
\tau_{u}=\frac{\ell(u)}{\ell(v)-1} \tau_{v}
$$

Radial layout - algorithm attempt

Idea

- Angle corresponding to size $\ell(u)$ of $T(u)$:

$$
\tau_{u}=\frac{\ell(u)}{\ell(v)-1} \tau_{v}
$$

Radial layout - how to avoid crossings

Radial layout - how to avoid crossings

■ τ_{u} - angle of the wedge corresponding to vertex u

Radial layout - how to avoid crossings

- τ_{u} - angle of the wedge corresponding to vertex u
- $\ell(u)$ - number of nodes in the subtree rooted at u
- ρ_{i} - raduis of layer i
$\square \cos \frac{\tau_{u}}{2}=\frac{\rho_{i}}{\rho_{i+1}}$

Radial layout - how to avoid crossings

- τ_{u} - angle of the wedge corresponding to vertex u
- $\ell(u)$ - number of nodes in the subtree rooted at u
- ρ_{i} - raduis of layer i
$\square \cos \frac{\tau_{u}}{2}=\frac{\rho_{i}}{\rho_{i+1}}$
$\square \tau_{u}=\min \left\{\frac{\ell(u)}{\ell(v)-1} \tau_{v}, 2 \arccos \frac{\rho_{i}}{\rho_{i+1}}\right\}$

Radial layout - how to avoid crossings

- τ_{u} - angle of the wedge corresponding to vertex u
- $\ell(u)$ - number of nodes in the subtree rooted at u
- ρ_{i} - raduis of layer i
$\square \cos \frac{\tau_{u}}{2}=\frac{\rho_{i}}{\rho_{i+1}}$
$\square \tau_{u}=\min \left\{\frac{\ell(u)}{\ell(v)-1} \tau_{v}, 2 \arccos \frac{\rho_{i}}{\rho_{i+1}}\right\}$
- Alternative:

$$
\begin{aligned}
& \alpha_{\min }=\alpha_{u}-\frac{\tau_{u}}{2} \geq \alpha_{u}-\arccos \frac{\rho_{i}}{\rho_{i+1}} \\
& \alpha_{\max }=\alpha_{u}+\frac{\tau_{u}}{2} \leq \alpha_{u}+\arccos \frac{\rho_{i}}{\rho_{i+1}}
\end{aligned}
$$

Radial layout - pseudocode

```
RadialTreeLayout(tree T, root r\inT, radii }\mp@subsup{\rho}{1}{}<\cdots<\mp@subsup{\rho}{k}{}\mathrm{ )
begin
    postorder(r)
    preorder(r,0,0,2\pi)
    return (d}\mp@subsup{|}{v}{},\mp@subsup{\alpha}{v}{}\mp@subsup{)}{v\inV(T)}{
    // vertex pos./polar coord.
```

postorder(vertex v)
calculate the size of the
subtree recursively

Radial layout - pseudocode

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_{1}<\cdots<\rho_{k}$) begin
postorder (r)
$\operatorname{preorder}(r, 0,0,2 \pi)$
return $\left(d_{v}, \alpha_{v}\right)_{v \in V(T)}$
// vertex pos./polar coord.
postorder(vertex v)
$\ell(v) \leftarrow 1$
foreach child w of v do
postorder (w)
$\ell(v) \leftarrow \ell(v)+\ell(w)$

Radial layout - pseudocode

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_{1}<\cdots<\rho_{k}$)

begin

postorder (r)
$\operatorname{preorder}(r, 0,0,2 \pi)$
return $\left(d_{v}, \alpha_{v}\right)_{v \in V(T)}$
// vertex pos./polar coord.
postorder(vertex v)
$\ell(v) \leftarrow 1$
foreach child w of v do postorder (w) $\ell(v) \leftarrow \ell(v)+\ell(w)$

```
preorder(vertex v, t, , < min , , max )
```

$$
\begin{aligned}
& d_{v} \leftarrow \rho_{t} \\
& \alpha_{v} \leftarrow\left(\alpha_{\min }+\alpha_{\max }\right) / 2
\end{aligned}
$$

$$
\text { if } t>0 \text { then }
$$

$$
\alpha_{\min } \leftarrow \max \left\{\alpha_{\min }, \alpha_{v}-\arccos \frac{\rho_{t}}{\rho_{t+1}}\right\}
$$

$$
\alpha_{\max } \leftarrow \min \left\{\alpha_{\max }, \alpha_{v}+\arccos \frac{\rho_{t}}{\rho_{t+1}}\right\}
$$

$l_{\text {left }} \leftarrow \alpha_{\text {min }}$
foreach child w of v do

$$
\begin{aligned}
& \text { right } \leftarrow \text { left }+\frac{\ell(w)}{\ell(v)-1} \cdot\left(\alpha_{\max }-\alpha_{\min }\right) \\
& \text { preorder }(w, t+1, \text { left }, \text { right }) \\
& \text { left } \leftarrow \text { right }
\end{aligned}
$$

Radial layout - pseudocode

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_{1}<\cdots<\rho_{k}$)

begin

postorder (r)
$\operatorname{preorder}(r, 0,0,2 \pi)$
return $\left(d_{v}, \alpha_{v}\right)_{v \in V(T)}$
// vertex pos./polar coord.
postorder(vertex v)
$\ell(v) \leftarrow 1$
foreach child w of v do postorder (w) $\ell(v) \leftarrow \ell(v)+\ell(w)$

```
preorder(vertex v,t, , <min},\mp@subsup{\alpha}{\mathrm{ max }}{}
```

 \(d_{v} \leftarrow \rho_{t}\)
 \(\alpha_{v} \leftarrow\left(\alpha_{\text {min }}+\alpha_{\text {max }}\right) / 2\)
 if \(t>0\) then
 \(\alpha_{\text {min }} \leftarrow \max \left\{\alpha_{\text {min }}, \alpha_{v}-\arccos \frac{\rho_{t}}{\rho_{t+1}}\right\}\)
 \(\alpha_{\text {max }} \leftarrow \min \left\{\alpha_{\text {max }}, \alpha_{v}+\arccos \frac{\rho_{t}}{\rho_{t+1}}\right\}\)
 \(l_{\text {left }} \leftarrow \alpha_{\text {min }}\)
 foreach child \(w\) of \(v\) do
 right \(\leftarrow\) left \(+\frac{\ell(w)}{\ell(v)-1} \cdot\left(\alpha_{\text {max }}-\alpha_{\text {min }}\right)\)
 \(\operatorname{preorder}(w, t+1\), left, right)
 left \(\leftarrow\) right

Radial layout - pseudocode

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_{1}<\cdots<\rho_{k}$)

begin

postorder (r)
$\operatorname{preorder}(r, 0,0,2 \pi)$
return $\left(d_{v}, \alpha_{v}\right)_{v \in V(T)}$
// vertex pos./polar coord.

postorder(vertex v)

$\ell(v) \leftarrow 1$
foreach child w of v do postorder (w) $\ell(v) \leftarrow \ell(v)+\ell(w)$

```
preorder(vertex v, t, \alpha min , , max )
```

$$
\begin{aligned}
& d_{v} \leftarrow \rho_{t} \\
& \alpha_{v} \leftarrow\left(\alpha_{\min }+\alpha_{\max }\right) / 2
\end{aligned}
$$

$$
\text { if } t>0 \text { then }
$$

$$
\alpha_{\min } \leftarrow \max \left\{\alpha_{\min }, \alpha_{v}-\arccos \frac{\rho_{t}}{\rho_{t+1}}\right\}
$$

$$
\alpha_{\max } \leftarrow \min \left\{\alpha_{\max }, \alpha_{v}+\arccos \frac{\rho_{t}}{\rho_{t+1}}\right\}
$$

$$
\text { left } \leftarrow \alpha_{\text {min }}
$$

$$
\text { foreach child } w \text { of } v \text { do }
$$

$$
\begin{aligned}
& \text { right } \leftarrow \text { left }+\frac{\ell(w)}{\ell(v)-1} \cdot\left(\alpha_{\text {max }}-\alpha_{\text {min }}\right) \\
& \text { preorder }(w, t+1, \text { left }, \text { right }) \\
& \text { left } \leftarrow \text { right }
\end{aligned}
$$

Radial layout - pseudocode

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_{1}<\cdots<\rho_{k}$)

begin

postorder (r)
$\operatorname{preorder}(r, 0,0,2 \pi)$
return $\left(d_{v}, \alpha_{v}\right)_{v \in V(T)}$
// vertex pos./polar coord.

postorder(vertex v)

$\ell(v) \leftarrow 1$
foreach child w of v do postorder (w) $\ell(v) \leftarrow \ell(v)+\ell(w)$

Runtime?

```
preorder(vertex v,t, , <min},\mp@subsup{\alpha}{\mathrm{ max }}{}
```

$$
\begin{aligned}
& d_{v} \leftarrow \rho_{t} \\
& \alpha_{v} \leftarrow\left(\alpha_{\min }+\alpha_{\max }\right) / 2
\end{aligned}
$$

$$
\text { if } t>0 \text { then }
$$

$$
\alpha_{\min } \leftarrow \max \left\{\alpha_{\min }, \alpha_{v}-\arccos \frac{\rho_{t}}{\rho_{t+1}}\right\}
$$

$$
\alpha_{\max } \leftarrow \min \left\{\alpha_{\max }, \alpha_{v}+\arccos \frac{\rho_{t}}{\rho_{t+1}}\right\}
$$

$$
\text { left } \leftarrow \alpha_{\text {min }}
$$

$$
\text { foreach child } w \text { of } v \text { do }
$$

$$
\begin{aligned}
& \text { right } \leftarrow \text { left }+\frac{\ell(w)}{\ell(v)-1} \cdot\left(\alpha_{\max }-\alpha_{\text {min }}\right) \\
& \text { preorder }(w, t+1, \text { left }, \text { right }) \\
& \text { left } \leftarrow \text { right }
\end{aligned}
$$

Radial layout - pseudocode

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_{1}<\cdots<\rho_{k}$)

begin

postorder (r)
$\operatorname{preorder}(r, 0,0,2 \pi)$
return $\left(d_{v}, \alpha_{v}\right)_{v \in V(T)}$
// vertex pos./polar coord.

postorder(vertex v)

$\ell(v) \leftarrow 1$
foreach child w of v do postorder (w) $\ell(v) \leftarrow \ell(v)+\ell(w)$

Runtime? $\mathcal{O}(n)$

```
preorder(vertex v, t, \alpha min , , max )
```

$$
\begin{aligned}
& d_{v} \leftarrow \rho_{t} \\
& \alpha_{v} \leftarrow\left(\alpha_{\min }+\alpha_{\max }\right) / 2
\end{aligned}
$$

$$
\text { if } t>0 \text { then }
$$

$$
\alpha_{\min } \leftarrow \max \left\{\alpha_{\min }, \alpha_{v}-\arccos \frac{\rho_{t}}{\rho_{t+1}}\right\}
$$

$$
\alpha_{\max } \leftarrow \min \left\{\alpha_{\max }, \alpha_{v}+\arccos \frac{\rho_{t}}{\rho_{t+1}}\right\}
$$

$$
\text { left } \leftarrow \alpha_{\text {min }}
$$

$$
\text { foreach child } w \text { of } v \text { do }
$$

$$
\begin{aligned}
& \text { right } \leftarrow \text { left }+\frac{\ell(w)}{\ell(v)-1} \cdot\left(\alpha_{\text {max }}-\alpha_{\text {min }}\right) \\
& \text { preorder }(w, t+1, \text { left }, \text { right }) \\
& \text { left } \leftarrow \text { right }
\end{aligned}
$$

Radial layout - pseudocode

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_{1}<\cdots<\rho_{k}$)

begin

postorder (r)
$\operatorname{preorder}(r, 0,0,2 \pi)$
return $\left(d_{v}, \alpha_{v}\right)_{v \in V(T)}$
// vertex pos./polar coord.
postorder(vertex v)
$\ell(v) \leftarrow 1$
foreach child w of v do postorder (w) $\ell(v) \leftarrow \ell(v)+\ell(w)$

Runtime? $\mathcal{O}(n)$
Correctness?

$$
\text { preorder(vertex } \left.v, t, \alpha_{\min }, \alpha_{\max }\right)
$$

$$
\begin{aligned}
& d_{v} \leftarrow \rho_{t} \\
& \alpha_{v} \leftarrow\left(\alpha_{\min }+\alpha_{\max }\right) / 2
\end{aligned}
$$

$$
\text { if } t>0 \text { then }
$$

$$
\alpha_{\min } \leftarrow \max \left\{\alpha_{\min }, \alpha_{v}-\arccos \frac{\rho_{t}}{\rho_{t+1}}\right\}
$$

$$
\alpha_{\max } \leftarrow \min \left\{\alpha_{\max }, \alpha_{v}+\arccos \frac{\rho_{t}}{\rho_{t+1}}\right\}
$$

$$
\text { left } \leftarrow \alpha_{\text {min }}
$$

$$
\text { foreach child } w \text { of } v \text { do }
$$

$$
\begin{aligned}
& \text { right } \leftarrow \text { left }+\frac{\ell(w)}{\ell(v)-1} \cdot\left(\alpha_{\text {max }}-\alpha_{\text {min }}\right) \\
& \text { preorder }(w, t+1, \text { left }, \text { right }) \\
& \text { left } \leftarrow \text { right }
\end{aligned}
$$

Radial layout - pseudocode

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_{1}<\cdots<\rho_{k}$)

begin

postorder (r)
$\operatorname{preorder}(r, 0,0,2 \pi)$
return $\left(d_{v}, \alpha_{v}\right)_{v \in V(T)}$
// vertex pos./polar coord.
postorder(vertex v)
$\ell(v) \leftarrow 1$
foreach child w of v do postorder (w) $\ell(v) \leftarrow \ell(v)+\ell(w)$

Runtime? $\mathcal{O}(n)$

```
preorder(vertex v, t, \alpha min , , max )
```

$$
\begin{aligned}
& d_{v} \leftarrow \rho_{t} \\
& \alpha_{v} \leftarrow\left(\alpha_{\min }+\alpha_{\max }\right) / 2
\end{aligned}
$$

$$
\text { if } t>0 \text { then }
$$

$$
\alpha_{\min } \leftarrow \max \left\{\alpha_{\min }, \alpha_{v}-\arccos \frac{\rho_{t}}{\rho_{t+1}}\right\}
$$

$$
\alpha_{\max } \leftarrow \min \left\{\alpha_{\max }, \alpha_{v}+\arccos \frac{\rho_{t}}{\rho_{t+1}}\right\}
$$

$$
\text { left } \leftarrow \alpha_{\text {min }}
$$

$$
\text { foreach child } w \text { of } v \text { do }
$$

$$
\begin{aligned}
& \text { right } \leftarrow \text { left }+\frac{\ell(w)}{\ell(v)-1} \cdot\left(\alpha_{\text {max }}-\alpha_{\text {min }}\right) \\
& \text { preorder }(w, t+1, \text { left }, \text { right }) \\
& \text { left } \leftarrow \text { right }
\end{aligned}
$$

Correctness?

Radial layout - result

Theorem.

Let T be a tree with n vertices. The RadialTreeLayout algorithm constructs in $O(n)$ time a drawing Γ of T
s.t.:

- Γ is radial drawing
- Vertices lie on circle according to their depth

Area quadratic in max degree times height of T (see book if interested)

Other tree visualisation styles

Writing Without Words: The project explores methods to visualises the differences in writing styles of different authors.

Similar to ballon layout

Other tree visualisation styles

A phylogenetically organised display of data for all placental mammal species.

Fractal layout

Other tree visualisation styles

Other tree visualisation styles

treevis.net

Literature

- [GD Ch. 3.1] for divide and conquer methods for rooted trees
- [RT81] Reingold and Tilford, "Tidier Drawings of Trees" 1981 - original paper for level-based layout algo
- [SR83] Reingold and Supowit, "The complexity of drawing trees nicely" 1983 -NP-hardness proof for area minimisation \& LP
- treevis.net - compendium of drawing methods for trees (links on website)
- [GD Ch. 3.2] for divide an conquer mehtods for series-parallel graphs

