Visualisation of graphs

Drawing series-parallel graphs

 Divide and conquer methods
Antonios Symvonis • Chrysanthi Raftopoulou

 Fall semester 2020

Series-parallel graphs

A graph G is series-parallel, if

- it contains a single edge (s, t), or

■ it consists of two series-parallel graphs G_{1}, G_{2} with sources s_{1}, s_{2} and sinks t_{1}, t_{2} that are
 combined using one of the following rules:

Series composition

Parallel composition

Series-parallel graphs

A graph G is series-parallel, if

- it contains a single edge (s, t), or

■ it consists of two series-parallel graphs G_{1}, G_{2} with sources s_{1}, s_{2} and sinks t_{1}, t_{2} that are combined using one of the following rules:

Series composition

Series-parallel graphs - decomposition tree

A decomposition tree of G is a binary tree T with nodes of three types: S, P and Q-type

Series-parallel graphs - decomposition tree

A decomposition tree of G is a binary tree T with nodes of three types: S, P and Q-type

■ A Q-node represents a single edge

Series-parallel graphs - decomposition tree

A decomposition tree of G is a binary tree T with nodes of three types: S, P and Q-type

■ A Q-node represents a single edge

- An S-node represents a series composition; its children T_{1} and T_{2} represent G_{1} and G_{2}

Series-parallel graphs - decomposition tree

A decomposition tree of G is a binary tree T with nodes of three types: S, P and Q-type

- A Q-node represents a single edge
- An S-node represents a series composition; its children T_{1} and T_{2} represent G_{1} and G_{2}

■ A P-node represents a parallel composition; its children T_{1} and T_{2} represent G_{1} and G_{2}

Series-parallel graphs - decomposition tree

We further require:
■ if a node μ and its parent v have the same type, then μ is the right child of v.

Series-parallel graphs - decomposition tree

We further require:

- if a node μ and its parent ν have the same type, then μ is the right child of ν.

Series-parallel graphs - decomposition tree

We further require:
■ if a node μ and its parent ν have the same type, then μ is the right child of ν.

Series-parallel graphs - decomposition tree

We further require:

- if a node μ and its parent ν have the same type, then μ is the right child of ν.

- Unique decomposition tree
- The order of the children (Q or S) define the graph embedding

Series-parallel graphs - decomposition example

Series-parallel graphs - applications

Flowcharts

PERT-Diagrams
(Program Evaluation and Review Technique)

Series-parallel graphs - applications

Flowcharts

PERT-Diagrams
(Program Evaluation and Review Technique)

Computational complexity:
Linear time algorithms for $\mathcal{N} \mathcal{P}$-hard problems (e.g. Maximum Matching, MIS, Hamiltonian Completion)

Series-parallel graphs - drawing style

Drawing conventions

Drawing aesthetics

Series-parallel graphs - drawing style

Drawing conventions

- Planarity
- Straight-line edges
- Upward

Drawing aesthetics

Series-parallel graphs - drawing style

Drawing conventions

- Planarity
- Straight-line edges
- Upward

Drawing aesthetics

- Area
- Symmetry

Series-parallel graphs - An exponential area bound

- A class of graphs that requires exponential area for its upward drawing

Theorem [Bertolazzi et al. 1994] Any upward drawing of the $2 n$-vertex embedded graph G_{n} that preserves the embedding requires area $\Omega\left(4^{n}\right)$, under any resolution rule.

Series-parallel graphs - An exponential area bound

- A class of graphs that requires exponential area for its upward drawing

Theorem [Bertolazzi et al. 1994] Any upward drawing of the $2 n$-vertex embedded graph G_{n} that preserves the embedding requires area $\Omega\left(4^{n}\right)$, under any resolution rule.

Series-parallel graphs - An exponential area bound

- A class of graphs that requires exponential area for its upward drawing

Theorem [Bertolazzi et al. 1994] Any upward drawing of the $2 n$-vertex embedded graph G_{n} that preserves the embedding requires area $\Omega\left(4^{n}\right)$, under any resolution rule.

Series-parallel graphs - An exponential area bound

- A class of graphs that requires exponential area for its upward drawing

Theorem [Bertolazzi et al. 1994] Any upward drawing of the $2 n$-vertex embedded graph G_{n} that preserves the embedding requires area $\Omega\left(4^{n}\right)$, under any resolution rule.

Series-parallel graphs - An exponential area bound

- A class of graphs that requires exponential area for its upward drawing

Theorem [Bertolazzi et al. 1994] Any upward drawing of the $2 n$-vertex embedded graph G_{n} that preserves the embedding requires area $\Omega\left(4^{n}\right)$, under any resolution rule.

Series-parallel graphs - fixed embedding

Series-parallel graphs - fixed embedding

Proof:

Series-parallel graphs - fixed embedding

Proof:

Series-parallel graphs - fixed embedding

Proof:

$t_{n+1}:$ - above τ
- to the right of ρ

Series-parallel graphs - fixed embedding

Proof:

$t_{n+1}: \quad$ - above τ
- to the right of ρ

$s_{n+1}:-$ below σ

G_{0}

Series-parallel graphs - fixed embedding

Proof:

$t_{n+1}: \quad$ - above τ
- to the right of ρ
- to the left of λ
$s_{n+1}:$ - below σ
- to the left of λ

G_{0}

Series-parallel graphs - fixed embedding

Proof:

$$
\begin{aligned}
t_{n+1}: & - \text { above } \tau \\
& - \text { to the right of } \rho \\
& - \text { to the left of } \lambda \\
s_{n+1}: & - \text { below } \sigma \\
& - \text { to the left of } \lambda
\end{aligned}
$$

Drawing Δ_{n+1} contains triangle T (yellow) defined by ρ, σ and λ

Go

Series-parallel graphs - fixed embedding

Proof:

$$
\begin{aligned}
t_{n+1}: & - \text { above } \tau \\
& - \text { to the right of } \rho \\
& - \text { to the left of } \lambda \\
& \\
s_{n+1}: & - \text { below } \sigma \\
& - \text { to the left of } \lambda
\end{aligned}
$$

Drawing Δ_{n+1} contains triangle T (yellow) defined by ρ, σ and λ

$$
\text { (yellow) defined by } \rho, \sigma \text { and } \lambda
$$

Go

G_{n+1}

Series-parallel graphs - fixed embedding

Proof:

- $2 \cdot \operatorname{Area}\left(\Delta_{n}\right)<\operatorname{Area}(\Pi)$ $\left[\overline{s_{n}, t_{n}}\right.$ is the diagonal of Π]

Go

G_{n+1}

Drawing Δ_{n+1} contains triangle T (yellow) defined by ρ, σ and λ

$$
\begin{aligned}
t_{n+1}: & - \text { above } \tau \\
& - \text { to the right of } \rho \\
& - \text { to the left of } \lambda \\
s_{n+1}: & - \text { below } \sigma \\
& - \text { to the left of } \lambda
\end{aligned}
$$

Series-parallel graphs - fixed embedding

Proof:

- $2 \cdot \operatorname{Area}\left(\Delta_{n}\right)<\operatorname{Area}(\Pi)$ [$\overline{s_{n}, t_{n}}$ is the diagonal of Π]

G_{0}

t_{n+1} : - above τ
- to the right of ρ
- to the left of λ
$s_{n+1}:$ - below σ
- to the left of λ

Drawing Δ_{n+1} contains triangle T (yellow) defined by ρ, σ and λ
T is the union of Π and similar triangles T^{\prime} and $T^{\prime \prime}$

Series-parallel graphs - fixed embedding

Proof:

■ $2 \cdot \operatorname{Area}\left(\Delta_{n}\right)<\operatorname{Area}(\Pi)$ [$\overline{s_{n}, t_{n}}$ is the diagonal of Π]

G_{0}

G_{n+1}
t_{n+1} : - above τ

- to the right of ρ
- to the left of λ
$s_{n+1}:$ - below σ
- to the left of λ

Drawing Δ_{n+1} contains triangle T (yellow) defined by ρ, σ and λ
T is the union of Π and similar triangles T^{\prime} and $T^{\prime \prime}$
$y z$: line parallel to λ through the intersection y of τ and ρ

Series-parallel graphs - fixed embedding

Proof:

■ $2 \cdot \operatorname{Area}\left(\Delta_{n}\right)<\operatorname{Area}(\Pi)$ $\left[\overline{s_{n}, t_{n}}\right.$ is the diagonal of Π]

■ $2 \cdot \operatorname{Area}(\Pi) \leq \operatorname{Area}\left(\Delta_{n+1}\right)$
$\operatorname{Area}(T) \leq \operatorname{Area}\left(\Delta_{n+1}\right)$
$\operatorname{Area}(T) \geq 2 \dot{A}$ rea (Π)

Go

G_{n+1}
t_{n+1} : - above τ

- to the right of ρ
- to the left of λ
$s_{n+1}:$ - below σ
- to the left of λ

Drawing Δ_{n+1} contains triangle T (yellow) defined by ρ, σ and λ
T is the union of Π and similar triangles T^{\prime} and $T^{\prime \prime}$
$y z$: line parallel to λ through the intersection y of τ and ρ

Series-parallel graphs - fixed embedding

Proof:

$\square 2 \cdot \operatorname{Area}\left(\Delta_{n}\right)<\operatorname{Area}(\Pi)$ [$\overline{s_{n}, t_{n}}$ is the diagonal of Π]

■ $2 \cdot \operatorname{Area}(\Pi) \leq \operatorname{Area}\left(\Delta_{n+1}\right)$
$\operatorname{Area}(T) \leq \operatorname{Area}\left(\Delta_{n+1}\right)$
$\operatorname{Area}(T) \geq 2 \dot{A}$ rea $(\Pi)$$4 \cdot \operatorname{Area}\left(\Delta_{n}\right) \leq \operatorname{Area}\left(\Delta_{n+1}\right)$

Go

G_{n+1}
$t_{n+1}:$ - above τ

- to the right of ρ
- to the left of λ
$s_{n+1}:-$ below σ
- to the left of λ

Drawing Δ_{n+1} contains triangle T (yellow) defined by ρ, σ and λ
T is the union of Π and similar triangles T^{\prime} and $T^{\prime \prime}$
$y z$: line parallel to λ through the intersection y of τ and ρ

Series-parallel graphs - straight-line drawings

Divide \& conquer algorithm using the decomposition tree
■ Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with no vertex placed at its right corner

Series-parallel graphs - straight-line drawings

Divide \& conquer algorithm using the decomposition tree
■ Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with no vertex placed at its right corner
Base case: Q-nodes

Series-parallel graphs - straight-line drawings

Divide \& conquer algorithm using the decomposition tree

- Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with no vertex placed at its right corner
Base case: Q-nodes Divide: Draw G_{1} and G_{2} first

Series-parallel graphs - straight-line drawings

Divide \& conquer algorithm using the decomposition tree
■ Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with no vertex placed at its right corner
Base case: Q-nodes Divide: Draw G_{1} and G_{2} first Conquer:
■ S-nodes / series composition

Series-parallel graphs - straight-line drawings

Divide \& conquer algorithm using the decomposition tree
■ Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with no vertex placed at its right corner
Base case: Q-nodes Divide: Draw G_{1} and G_{2} first

Conquer:

- S-nodes / series composition

■ P-nodes / parallel composition

Series-parallel graphs - straight-line drawings

Divide \& conquer algorithm using the decomposition tree
■ Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with no vertex placed at its right corner
Base case: Q-nodes Divide: Draw G_{1} and G_{2} first

Conquer:

- S-nodes / series composition

■ P-nodes / parallel composition

Series-parallel graphs - straight-line drawings

Divide \& conquer algorithm using the decomposition tree
■ Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with no vertex placed at its right corner
Base case: Q-nodes Divide: Draw G_{1} and G_{2} first

Conquer:

■ S-nodes / series composition
■ P-nodes / parallel composition

Series-parallel graphs - straight-line drawings

Divide \& conquer algorithm using the decomposition tree
■ Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with no vertex placed at its right corner
Base case: Q-nodes Divide: Draw G_{1} and G_{2} first

Conquer:

■ S-nodes / series composition
■ P-nodes / parallel composition

Series-parallel graphs - straight-line drawings

Divide \& conquer algorithm using the decomposition tree
■ Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with no vertex placed at its right corner
Base case: Q-nodes Divide: Draw G_{1} and G_{2} first

Conquer:

- S-nodes / series composition

■ P-nodes / parallel composition

Series-parallel graphs - straight-line drawings

Divide \& conquer algorithm using the decomposition tree
■ Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with no vertex placed at its right corner
Base case: Q-nodes Divide: Draw G_{1} and G_{2} first

Conquer:

■ S-nodes / series composition
■ P-nodes / parallel composition

change embedding!

Series-parallel graphs - straight-line drawings

Divide \& conquer algorithm using the decomposition tree
■ Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with no vertex placed at its right corner
Base case: Q-nodes Divide: Draw G_{1} and G_{2} first

Conquer:

■ S-nodes / series composition
■ P-nodes / parallel composition

change embedding!

Series-parallel graphs - straight-line drawings

Divide \& conquer algorithm using the decomposition tree
■ Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$ with no vertex placed at its right corner
Base case: Q-nodes Divide: Draw G_{1} and G_{2} first

Conquer:

■ S-nodes / series composition
■ P-nodes / parallel composition

change embedding!

Series-parallel graphs - straight-line drawings

\square What makes parallel composition possible without creating crossings?

Series-parallel graphs - straight-line drawings

\square What makes parallel composition possible without creating crossings?

Series-parallel graphs - straight-line drawings

\square What makes parallel composition possible without creating crossings?

Series-parallel graphs - straight-line drawings

\square What makes parallel composition possible without creating crossings?

Series-parallel graphs - straight-line drawings

\square What makes parallel composition possible without creating crossings?

Series-parallel graphs - straight-line drawings

\square What makes parallel composition possible without creating crossings?

Series-parallel graphs - straight-line drawings

\square What makes parallel composition possible without creating crossings?

Series-parallel graphs - straight-line drawings

What makes parallel composition possible without creating crossings?

Assume the following holds:
the only vertex in angle(v) is s

Series-parallel graphs - straight-line drawings

\square What makes parallel composition possible without creating crossings?

Assume the following holds: the only vertex in angle (v) is s
\square This condition is preserved during the induction step.

Series-parallel graphs - straight-line drawings

- What makes parallel composition possible without creating crossings?

Assume the following holds: the only vertex in angle (v) is s
\square This condition is preserved during the induction step.

Lemma.

The drawing produced by the algorithm is planar.

Series-parallel graphs - result

```
Theorem.
Let G be a series-parallel graph. Then G (with
variable embedding) admits a drawing }\Gamma\mathrm{ that
\square is upward planar and
| a straight-line drawing
| with area in \mathcal{O}(\mp@subsup{n}{}{2})
    [ m\times2m, where m}\mathrm{ is the number of edges of G]
\square Isomorphic components of G have congruent
    drawings up to translation.
\Gamma ~ c a n ~ b e ~ c o m p u t e d ~ i n ~ \mathcal { O } ( n ) ~ t i m e .
```


Literature

- [GD Ch. 3.2] for divide an conquer mehtods for series-parallel graphs.
$\square[B C+94]$ Bertolazzi, Cohen, Di Battista, Tamassia and Tollis, "How to draw a series-parallel digraph", Int. J. of Computational Geometry and Applications, Vol. 4, pp. 385-402, 1994.

