Visualisation of graphs

Planar straight-line drawings Canonical order

Antonios Symvonis - Chrysanthi Raftopoulou

Fall semester 2020

Motivation

- So far we looked at planar and straight-line drawings of trees and series-parallel graphs.

Motivation

■ So far we looked at planar and straight-line drawings of trees and series-parallel graphs.
■ Why straight-line? Why planar?

Motivation

■ So far we looked at planar and straight-line drawings of trees and series-parallel graphs.
■ Why straight-line? Why planar?
■ Bennett, Ryall, Spaltzeholz and Gooch, 2007 "The Aesthetics of Graph Visualization"

3.2. Edge Placement Heuristics

By far the most agreed-upon edge placement heuristic is to minimize the number of edge crossings in a graph [BMRW98,Har98, DH96, Pur02, TR05,TBB88]. The importance of avoiding edge crossings has also been extensively validated in terms of user preference and performance (see Section 4). Similarly, based on perceptual principles, it is beneficial to minimize the number of edge bends within a graph [Pur02, TR05, TBB88]. Edge bends make edges more difficult to follow because an edge with a sharp bend is more likely to be perceived as two separate objects. This leads to the heuristic of keeping edge bends uniform with respect to the bend's position on the edge and its angle [TR05]. If an edge must be bent to satisfy other aesthetic criteria, the angle of the bend should be as little as possible, and the bend placement should evenly divide the edge.

Motivation

■ So far we looked at planar and straight-line drawings of trees and series-parallel graphs.
■ Why straight-line? Why planar?
■ Bennett, Ryall, Spaltzeholz and Gooch, 2007 "The Aesthetics of Graph Visualization"

3.2. Edge Placement Heuristics

By far the most agreed-upon edge placement heuristic is to minimize the number of edge crossings in a graph [BMRW98,Har98, DH96, Pur02,TR05,TBB88]. The importance of avoiding edge crossings has also been extensively validated in terms of user preference and performance (see Section 4). Similarly, based on perceptual principles, it is beneficial to minimize the number of edge bends within a graph [Pur02, TR05, TBB88]. Edge bends make edges more difficult to follow because an edge with a sharp bend is more likely to be perceived as two separate objects. This leads to the heuristic of keeping edge bends uniform with respect to the bend's position on the edge and its angle [TR05]. If an edge must be bent to satisfy other aesthetic criteria, the angle of the bend should be as little as possible, and the bend placement should evenly divide the edge.

■ crossings reduce readability
■ bends reduce readability

Planar graphs

■ Characterisation: A graph is planar iff it contains neither a K_{5} nor a $K_{3,3}$ minor. [Kuratowski 1930, Wagner 1936]

Planar graphs

■ Characterisation: A graph is planar iff it contains neither a K_{5} nor a $K_{3,3}$ minor. [Kuratowski 1930, Wagner 1936]

Planar graphs

■ Characterisation: A graph is planar iff it contains neither a K_{5} nor a $K_{3,3}$ minor. [Kuratowski 1930, Wagner 1936]

Planar graphs

■ Characterisation: A graph is planar iff it contains neither a K_{5} nor a $K_{3,3}$ minor. [Kuratowski 1930, Wagner 1936]

Planar graphs

■ Characterisation: A graph is planar iff it contains neither a K_{5} nor a $K_{3,3}$ minor. [Kuratowski 1930, Wagner 1936]

Planar graphs

■ Characterisation: A graph is planar iff it contains neither a K_{5} nor a $K_{3,3}$ minor. [Kuratowski 1930, Wagner 1936]

Planar graphs

■ Characterisation: A graph is planar iff it contains neither a K_{5} nor a $K_{3,3}$ minor. [Kuratowski 1930, Wagner 1936]

Planar graphs

■ Characterisation: A graph is planar iff it contains neither a K_{5} nor a $K_{3,3}$ minor. [Kuratowski 1930, Wagner 1936]

Planar graphs

■ Characterisation: A graph is planar iff it contains neither a K_{5} nor a $K_{3,3}$ minor. [Kuratowski 1930, Wagner 1936]

- Recognition: For a graph G with n vertices, there is an $\mathcal{O}(n)$ time algorithm to test if G is planar. [Hopcroft \& Tarjan 1974]
- Also computes an embedding in $\mathcal{O}(n)$.

Planar graphs

- Embedding of planar graph:

■ clockwise circular order of the edges incident to each vertex
■ outerface (clockwise order of edges)

Planar graphs

- Embedding of planar graph:

■ clockwise circular order of the edges incident to each vertex
■ outerface (clockwise order of edges)

Planar graphs

- Embedding of planar graph:
- clockwise circular order of the edges incident to each vertex

■ outerface (clockwise order of edges)

Planar graphs

■ Embedding of planar graph:

- clockwise circular order of the edges incident to each vertex
- outerface (clockwise order of edges)

■ Edges:
$1:\{(1,5),(1,2),(1,3)\}$
$2:\{(2,1),(2,5),(2,3)\}$
$3:\{(3,1),(3,2),(3,5),(3,4),(3,6)\}$
$4:\{(4,3),(4,5)\}$
$5:\{(5,6),(5,4),(5,3),(5,2),(5,1)\}$
$6:\{(6,3),(6,5)\}$

Planar graphs

- Embedding of planar graph:
- clockwise circular order of the edges incident to each vertex

■ outerface (clockwise order of edges)

■ Edges:
$1:\{(1,5),(1,2),(1,3)\}$
$2:\{(2,1),(2,5),(2,3)\}$
$3:\{(3,1),(3,2),(3,5),(3,4),(3,6)\}$
$4:\{(4,3),(4,5)\}$
$5:\{(5,6),(5,4),(5,3),(5,2),(5,1)\}$
$6:\{(6,3),(6,5)\}$
■ Outerface:
$1:\{(1,3),(3,6),(6,5),(5,1)\}$

Planar graphs

■ Straight-line drawing: Every planar graph has an embedding where the edges are straight-line segments. [Wagner 1936, Fáry 1948, Stein 1951]

- The algorithms implied by this theory produce drawings with area not bounded by any polynomial on n.

Planar graphs

■ Straight-line drawing: Every planar graph has an embedding where the edges are straight-line segments. [Wagner 1936, Fáry 1948, Stein 1951]

- The algorithms implied by this theory produce drawings with area not bounded by any polynomial on n.

■ Coin graph: Every planar graph is a circle contact graph (implies straight-line drawing). [Koebe 1936]

Planar graphs

■ Straight-line drawing: Every planar graph has an embedding where the edges are straight-line segments. [Wagner 1936, Fáry 1948, Stein 1951]
■ The algorithms implied by this theory produce drawings with area not bounded by any polynomial on n.

■ Coin graph: Every planar graph is a circle contact graph (implies straight-line drawing). [Koebe 1936]

■ Every 3-connected planar graph has an embedding with convex polygons as its faces (i.e., implies straight lines). [Tutte 1963: How to draw a graph]
■ Idea: Place vertices in the barycentre of neighbours.

- Drawback: Requires large grids.

Planar graphs

■ Coin graph:
Exponential area

Planar graphs

■ Coin graph:
Exponential area

Planar graphs

■ Coin graph:
Exponential area

Planar graphs

■ Coin graph:
Exponential area

Planar graphs

■ Coin graph:
Exponential area

Planar graphs

■ Coin graph:
Exponential area

■ Barycentric representation: Exponential area

Planar graphs

■ Coin graph:
Exponential area

■ Barycentric representation: Exponential area

Planar graphs

- Coin graph:

Exponential area

■ Barycentric representation:
Exponential area

Planar graphs

- Coin graph: Exponential area

- Barycentric representation:

Exponential area

Planar graphs

- Coin graph:

Exponential area

- Barycentric representation:

Exponential area

Planar graphs

■ Coin graph: Exponential area

- Barycentric representation:

Exponential area

Planar graphs

- Every planar graph has at most $3 n-6$ edges
- A planar triangulation is a planar graph with $3 n-6$ edges

Planar graphs

■ Every planar graph has at most $3 n-6$ edges

- A planar triangulation is a planar graph with $3 n-6$ edges
- Properties of planar triangulations:
- Every face is a triangle
- graph is 3-connected
- Unique embedding (up to choice of outerface)
- Every plane graph is subgraph of a plane triangulation

Planar graphs

■ Every planar graph has at most $3 n-6$ edges

- A planar triangulation is a planar graph with $3 n-6$ edges

■ Properties of planar triangulations:

- Every face is a triangle
- graph is 3-connected
- Unique embedding (up to choice of outerface)
- Every plane graph is subgraph of a plane triangulation with planar embedding

Planar graphs

- Every planar graph has at most $3 n-6$ edges
- A planar triangulation is a planar graph with $3 n-6$ edges

■ Properties of planar triangulations:

- Every face is a triangle
- graph is 3-connected
- Unique embedding (up to choice of outerface)
- Every plane graph is subgraph of a plane triangulation
 with planar embedding

Planar graphs

- Every planar graph has at most $3 n-6$ edges
- A planar triangulation is a planar graph with $3 n-6$ edges
- Properties of planar triangulations:
- Every face is a triangle
- graph is 3-connected

■ Unique embedding (up to choice of outerface)

- Every plane graph is subgraph of a plane triangulation
 with planar embedding
- We focus on triangulations:
- A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.

Planar straight-line drawings

Goal:

For an n-vertex planar graph create a planar straight-line drawing of size $\mathcal{O}\left(n^{2}\right)$.

Planar straight-line drawings

Goal:
For an n-vertex planar graph create a planar straight-line drawing of size $\mathcal{O}\left(n^{2}\right)$.

Idea.
Create drawing incrementally by adding vertices

Planar straight-line drawings

Goal:

For an n-vertex planar graph create a planar straight-line drawing of size $\mathcal{O}\left(n^{2}\right)$.

Idea.
Create drawing incrementally by adding vertices

Idea (refined).

- Start with singe edge $\left(v_{1}, v_{2}\right)$. Let this be G_{2}.

Planar straight-line drawings

Goal:

For an n-vertex planar graph create a planar straight-line drawing of size $\mathcal{O}\left(n^{2}\right)$.

Idea.
Create drawing incrementally by adding vertices

Idea (refined).

■ Start with singe edge $\left(v_{1}, v_{2}\right)$. Let this be G_{2}.

Planar straight-line drawings

Goal:

For an n-vertex planar graph create a planar straight-line drawing of size $\mathcal{O}\left(n^{2}\right)$.

Idea.

Create drawing incrementally by adding vertices

Idea (refined).

\square Start with singe edge $\left(v_{1}, v_{2}\right)$. Let this be G_{2}.
■ To obtain G_{i+1}, add v_{i+1} to G_{i} so that neighbours of v_{i+1} are on the outer face of G_{i}.

- Neighbours of v_{i+1} in G_{i} have to form path of length at least two.

Canonical order - definition

Definition.

Let $G=(V, E)$ be a triangulated plane graph on $n \geq 3$ vertices. An order $\pi=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is called a canonical order, if the following conditions hold for each $k, 3 \leq k \leq n$:

Canonical order - definition

Definition.

Let $G=(V, E)$ be a triangulated plane graph on $n \geq 3$ vertices. An order $\pi=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is called a canonical order, if the following conditions hold for each $k, 3 \leq k \leq n$:
(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

Canonical order - definition

Definition.

Let $G=(V, E)$ be a triangulated plane graph on $n \geq 3$ vertices. An order $\pi=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is called a canonical order, if the following conditions hold for each $k, 3 \leq k \leq n$:
(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.
(C2) Edge $\left(v_{1}, v_{2}\right)$ belongs to the outer face of G_{k}.

Canonical order - definition

Definition.

Let $G=(V, E)$ be a triangulated plane graph on $n \geq 3$ vertices. An order $\pi=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is called a canonical order, if the following conditions hold for each $k, 3 \leq k \leq n$:
(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

- (C2) Edge $\left(v_{1}, v_{2}\right)$ belongs to the outer face of G_{k}.
- (C3) If $k<n$ then vertex v_{k+1} lies in the outer face of G_{k}, and all neighbors of v_{k+1} in G_{k} appear on the boundary of G_{k} consecutively.

Canonical order - definition

Definition.

Let $G=(V, E)$ be a triangulated plane graph on $n \geq 3$ vertices. An order $\pi=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is called a canonical order, if the following conditions hold for each $k, 3 \leq k \leq n$:
(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

- (C2) Edge $\left(v_{1}, v_{2}\right)$ belongs to the outer face of G_{k}.
- (C3) If $k<n$ then vertex v_{k+1} lies in the outer face of G_{k}, and all neighbors of v_{k+1} in G_{k} appear on the boundary of G_{k} consecutively.

Compute:

- either $\left\{v_{3}, v_{4}, \ldots v_{n}\right\}$ (adding vertices)
\square or $\left\{v_{n}, v_{n-1}, \ldots v_{3}\right\}$ (removing vertices)

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - example

Canonical order - existence

Lemma.

Every triangulated plane graph has a canonical order.

Canonical order - existence

Lemma.

Every triangulated plane graph has a canonical order.

Proof.

\square Let $G_{n}=G$, and let v_{1}, v_{2}, v_{n} be the vertices of the outer face of G_{n}. Conditions C1-C3 hold.

Canonical order - existence

Lemma.

Every triangulated plane graph has a canonical order.

Proof.

\square Let $G_{n}=G$, and let v_{1}, v_{2}, v_{n} be the vertices of the outer face of G_{n}. Conditions C1-C3 hold.
■ Induction hypothesis: Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions C1-C3 hold for $k+1 \leq i \leq n$.

Canonical order - existence

Lemma.

Every triangulated plane graph has a canonical order.

Proof.

\square Let $G_{n}=G$, and let v_{1}, v_{2}, v_{n} be the vertices of the outer face of G_{n}. Conditions C1-C3 hold.
\square Induction hypothesis: Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions C1-C3 hold for $k+1 \leq i \leq n$.

- Induction step: Consider G_{k}. We search for v_{k}.

Canonical order - existence

Lemma.

Every triangulated plane graph has a canonical order.

Proof.

\square Let $G_{n}=G$, and let v_{1}, v_{2}, v_{n} be the vertices of the outer face of G_{n}. Conditions C1-C3 hold.
\square Induction hypothesis: Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions C1-C3 hold for $k+1 \leq i \leq n$.

- Induction step: Consider G_{k}. We search for v_{k}.

Canonical order - existence

Lemma.

Every triangulated plane graph has a canonical order.

Proof.

\square Let $G_{n}=G$, and let v_{1}, v_{2}, v_{n} be the vertices of the outer face of G_{n}. Conditions C1-C3 hold.
■ Induction hypothesis: Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions C1-C3 hold for $k+1 \leq i \leq n$.

- Induction step: Consider G_{k}. We search for v_{k}.

Canonical order - existence

Lemma.

Every triangulated plane graph has a canonical order.

Proof.

\square Let $G_{n}=G$, and let v_{1}, v_{2}, v_{n} be the vertices of the outer face of G_{n}. Conditions C1-C3 hold.
■ Induction hypothesis: Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions C1-C3 hold for $k+1 \leq i \leq n$.
■ Induction step: Consider G_{k}. We search for v_{k}.

Have to show:

1. v_{k} not adjacent to chord is sufficient
2. Such v_{k} exists

Canonical order - existence

Claim 1. If v_{k} is not adjacent to a chord then removal of v_{k} leaves the graph biconnected.

Canonical order - existence

Claim 1. If v_{k} is not adjacent to a chord then removal of v_{k} leaves the graph biconnected.

Canonical order - existence

Claim 1. If v_{k} is not adjacent to a chord then removal of v_{k} leaves the graph biconnected.

Canonical order - existence

Claim 1. If v_{k} is not adjacent to a chord then removal of v_{k} leaves the graph biconnected.

Canonical order - existence

Claim 1. If v_{k} is not adjacent to a chord then removal of v_{k} leaves the graph biconnected.

Canonical order - existence

Claim 1. If v_{k} is not adjacent to a chord then removal of v_{k} leaves the graph biconnected.

Canonical order - existence

Claim 1. If v_{k} is not adjacent to a chord then removal of v_{k} leaves the graph biconnected.

Claim 2.

There exists a vertex in G_{k} that is not adjacent to a chord as choice for v_{k}.

Canonical order - existence

Claim 1. If v_{k} is not adjacent to a chord then removal of v_{k} leaves the graph biconnected.

Claim 2.
There exists a vertex in G_{k} that is not adjacent to a chord as choice for v_{k}.
vertices with degree 2

Canonical order - existence

Claim 1. If v_{k} is not adjacent to a chord then removal of v_{k} leaves the graph biconnected.

Claim 2.
There exists a vertex in G_{k} that is not adjacent to a chord as choice for v_{k}.
vertices with degree 2

This completes proof of Lemma.

Canonical order - implementation

- chords of G_{k} belong to faces:

Canonical order - implementation

- chords of G_{k} belong to faces:

$\square f$ has two vertices on the outerface and one internal

Canonical order - implementation

- chords of G_{k} belong to faces:

$\square f$ has two vertices on the outerface and one internal
- f has three vertices on the outerface and at least two chords

Canonical order - implementation

■ chords of G_{k} belong to faces:

$\square f$ has two vertices on the outerface and one internal

- f has three vertices on the outerface and at least two chords
$\square f$ has three consequtive vertices on the outerface

Canonical order - implementation

- chords of G_{k} belong to faces:

- chords are associated with separating faces

■ v_{k} belongs to no separating faces *
$\square f$ has two vertices on the outerface and one internal

- f has three vertices on the outerface and at least two chords
- f has three consequtive vertices on the outerface

Canonical order - implementation

■ chords of G_{k} belong to faces:

■ chords are associated with separating faces

- v_{k} belongs to no separating faces *
$\square f$ has two vertices on the outerface and one internal
- f has three vertices on the outerface and at least two chords
- f has three consequtive vertices on the outerface

Canonical order - implementation

- $f_{\text {out }}=$ current outerface
- $F(v)=$ faces that contain v

- $F(e)=$ faces that contain e

■ chords are associated with separating faces
■ v_{k} belongs to no separating faces *

Canonical order - implementation

- $f_{\text {out }}=$ current outerface
- $F(v)=$ faces that contain v

- $F(e)=$ faces that contain e
- out $V(f)=\#$ vertices of f on $f_{\text {out }}$

■ outE $(f)=\#$ edges of f on $f_{\text {out }}$

- $\operatorname{sepF}(v)=\#$ separation faces that contain v

■ chords are associated with separating faces
■ v_{k} belongs to no separating faces *

Canonical order - implementation

- $f_{\text {out }}=$ current outerface
- $F(v)=$ faces that contain v
- $F(e)=$ faces that contain e
- out $V(f)=\#$ vertices of f on $f_{\text {out }}$
- outE $(f)=\#$ edges of f on $f_{\text {out }}$
- $\operatorname{sepF}(v)=\#$ separation faces that contain v
$f \in F(v)$ is separating iff
- outV $(f)=3$ or
- outV $(f)=2$ and outE $(f)=0$

■ v_{k} belongs to no separating faces *

Canonical order - implementation

- $f_{\text {out }}=$ current outerface
- $F(v)=$ faces that contain v
- $F(e)=$ faces that contain e
- out $V(f)=\#$ vertices of f on $f_{\text {out }}$

■ outE $(f)=\#$ edges of f on $f_{\text {out }}$

- $\operatorname{sepF}(v)=\#$ separation faces that contain v

Canonical order - implementation

Algorithm CanonicalOrder- Initialization

```
forall v\inV do
    sepF(v)\leftarrow0;
forall }f\inF\mathrm{ do
    LoutV}(f)\mathrm{ , outE }(f)\leftarrow0
```

- $f_{\text {out }}=$ current outerface
- $F(v)=$ faces that contain v
- $F(e)=$ faces that contain e
- out $\mathrm{V}(f)=\#$ vertices of f on $f_{\text {out }}$
- outE $(f)=\#$ edges of f on $f_{\text {out }}$
- $\operatorname{sepF}(v)=\#$ separation faces that contain v

Canonical order - implementation

Algorithm CanonicalOrder- Initialization

forall $v \in V$ do
$L \operatorname{sep} F(v) \leftarrow 0$;
forall $f \in F$ do
L out $V(f)$, out $E(f) \leftarrow 0$;
forall $v \in f_{\text {out }}$ do
forall $f \in F(v): f \neq f_{\text {out }}$ do L outV $(f)++$;
forall $e \in f_{\text {out }}$ do
forall $f \in F(e): f \neq f_{\text {out }}$ do L out $\mathrm{E}(f)++$;

- $f_{\text {out }}=$ current outerface

■ $F(v)=$ faces that contain v

- $F(e)=$ faces that contain e
- out $\mathrm{V}(f)=\#$ vertices of f on $f_{\text {out }}$
- outE $(f)=\#$ edges of f on $f_{\text {out }}$

■ $\operatorname{sep} F(v)=\#$ separation faces that contain v

Canonical order - implementation

Algorithm CanonicalOrder- Initialization

forall $v \in V$ do
$L \operatorname{sepF}(v) \leftarrow 0$;
forall $f \in F$ do
L out $V(f)$, out $E(f) \leftarrow 0$;
forall $v \in f_{\text {out }}$ do
forall $f \in F(v): f \neq f_{\text {out }}$ do L out $\mathrm{V}(f)++$;
forall $e \in f_{\text {out }}$ do
forall $f \in F(e): f \neq f_{\text {out }}$ do L out $E(f)++$;
forall $v \in f_{\text {out }}$ do
forall $f \in F(v): f \neq f_{\text {out }}$ do
if out $\mathrm{V}(f)=3$ or out $\mathrm{V}(f)=2$
and out $E(f)=0$ then
$\operatorname{sep} F(v)++$;

Canonical order - implementation

Remove degree 2 vertex \mathcal{v}_{k}

- $f_{\text {out }}=$ current outerface
- $F(v)=$ faces that contain v
- $F(e)=$ faces that contain e
- out $\mathrm{V}(f)=\#$ vertices of f on $f_{\text {out }}$
- outE $(f)=\#$ edges of f on $f_{\text {out }}$
- $\operatorname{sepF}(v)=\#$ separation faces that contain v

Canonical order - implementation

Remove degree 2 vertex v_{k}

- v_{k} and f_{1} are removed
- outE $\left(f_{2}\right)$ increases by one
$\square \operatorname{sepF}\left(w_{i-1}\right)$ decreases by one
$\square \operatorname{sepF}\left(w_{i+1}\right)$ decreases by one
- $f_{\text {out }}=$ current outerface
- $F(v)=$ faces that contain v
- $F(e)=$ faces that contain e
- out $\mathrm{V}(f)=\#$ vertices of f on $f_{\text {out }}$
- outE $(f)=\#$ edges of f on $f_{\text {out }}$
- $\operatorname{sepF}(v)=\#$ separation faces that contain v

Canonical order - implementation

Remove degree 2 vertex v_{k}

- v_{k} and f_{1} are removed
- outE $\left(f_{2}\right)$ increases by one
$\square \operatorname{sepF}\left(w_{i-1}\right)$ decreases by one
$\square \operatorname{sepF}\left(w_{i+1}\right)$ decreases by one
- if f_{2} has outV $\left(f_{2}\right)=2$, f_{2} is not a separating face
$\square \operatorname{sepF}\left(w_{i-1}\right)$ decreases by one
$\square \operatorname{sepF}\left(w_{i+1}\right)$ decreases by one
- $f_{\text {out }}=$ current outerface
- $F(v)=$ faces that contain v
- $F(e)=$ faces that contain e
- out $\mathrm{V}(f)=\#$ vertices of f on $f_{\text {out }}$
- outE $(f)=\#$ edges of f on $f_{\text {out }}$
- $\operatorname{sepF}(v)=\#$ separation faces that contain v

Canonical order - implementation

Remove v_{k} with $\operatorname{sep} F\left(v_{k}\right)=0$

- $f_{\text {out }}=$ current outerface
- $F(v)=$ faces that contain v
- $F(e)=$ faces that contain e
- out $V(f)=\#$ vertices of f on $f_{\text {out }}$

■ outE $(f)=\#$ edges of f on $f_{\text {out }}$

- $\operatorname{sepF}(v)=\#$ separation faces that contain v
- face f_{i} contains edge (w_{i-1}, w_{i}) of the outerface of G_{k-1}
■ face f_{i}^{\prime} contains edges of w_{i} that are in the interior of G_{k-1}

Canonical order - implementation

Remove v_{k} with $\operatorname{sepF}\left(v_{k}\right)=0$

- v_{k} and faces that contain v_{k} are removed
\square out $\mathrm{V}\left(f_{i}\right)$ increases by two, $p+1 \leq i \leq q$
■ out $\mathrm{V}\left(f_{p}\right)$, out $\mathrm{V}\left(f_{q+1}\right)$ increases by one
■ outV $\left(f_{i}^{\prime}\right)$ incrases by one, $p \leq i \leq q$
■ outE $\left(f_{i}\right)$ increases by one, $p \leq i \leq q+1$
- $f_{\text {out }}=$ current outerface
- $F(v)=$ faces that contain v
- $F(e)=$ faces that contain e
- out $V(f)=\#$ vertices of f on $f_{\text {out }}$

■ outE $(f)=\#$ edges of f on $f_{\text {out }}$

- $\operatorname{sepF}(v)=\#$ separation faces that contain v
- face f_{i} contains edge (w_{i-1}, w_{i}) of the outerface of G_{k-1}
- face f_{i}^{\prime} contains edges of w_{i} that are in the interior of G_{k-1}

Canonical order - implementation

Remove v_{k} with $\operatorname{sepF}\left(v_{k}\right)=0$

- v_{k} and faces that contain v_{k} are removed
\square out $\mathrm{V}\left(f_{i}\right)$ increases by two, $p+1 \leq i \leq q$
- out $\mathrm{V}\left(f_{p}\right)$, out $\mathrm{V}\left(f_{q+1}\right)$ increases by one

■ outV $\left(f_{i}^{\prime}\right)$ incrases by one, $p \leq i \leq q$
■ outE $\left(f_{i}\right)$ increases by one, $p \leq i \leq q+1$

- if f_{i} or f_{i}^{\prime} becomes separating
- $f_{\text {out }}=$ current outerface
- $F(v)=$ faces that contain v
- $F(e)=$ faces that contain e
- out $V(f)=\#$ vertices of f on $f_{\text {out }}$

■ outE $(f)=\#$ edges of f on $f_{\text {out }}$
$\square \operatorname{sepF}(v)=\#$ separation faces that contain v

- increase $\operatorname{sepF}(u)$ by one for all its vertices u
\square face f_{i} contains edge $\left(w_{i-1}, w_{i}\right)$ of the outerface of G_{k-1}
■ face f_{i}^{\prime} contains edges of w_{i} that are in the interior of G_{k-1}

Canonical order - implementation

Algorithm CanonicalOrder

initialize;
for $k=n$ to 3 do
choose $v_{k} \neq v_{1}, v_{2}$ such that
$-\operatorname{sepf}(v)=0$ or

- or $F(v)=\{f\}$, out $\mathrm{V}(f)=3$ and out $\mathrm{E}(f)=2$
- $f_{\text {out }}=$ current outerface
- $F(v)=$ faces that contain v
- $F(e)=$ faces that contain e
- out $\mathrm{V}(f)=\#$ vertices of f on $f_{\text {out }}$
- outE $(f)=\#$ edges of f on $f_{\text {out }}$
sepF(v) $=\#$ separation faces that contain v

Canonical order - implementation

Algorithm CanonicalOrder

initialize;
for $k=n$ to 3 do
choose $v_{k} \neq v_{1}, v_{2}$ such that
$-\operatorname{sepf}(v)=0$ or

- or $F(v)=\{f\}$, out $\mathrm{V}(f)=3$ and $\operatorname{out} \mathrm{E}(f)=2$
- $f_{\text {out }}=$ current outerface
- $F(v)=$ faces that contain v
- $F(e)=$ faces that contain e
- out $\mathrm{V}(f)=\#$ vertices of f on $f_{\text {out }}$

■ outE $(f)=\#$ edges of f on $f_{\text {out }}$ $\operatorname{sep} F(v)=\#$ separation faces that contain v

Canonical order - implementation

Algorithm CanonicalOrder

initialize;
for $k=n$ to 3 do
choose $v_{k} \neq v_{1}, v_{2}$ such that
$-\operatorname{sepf}(v)=0$ or

- or $F(v)=\{f\}$, out $\mathrm{V}(f)=3$ and out $\mathrm{E}(f)=2$
replace v_{k} with path $P=w_{p} \ldots w_{q}$ in $f_{\text {out }}$;
- $f_{\text {out }}=$ current outerface
- $F(v)=$ faces that contain v
- $F(e)=$ faces that contain e
- out $\mathrm{V}(f)=\#$ vertices of f on $f_{\text {out }}$

■ outE $(f)=\#$ edges of f on $f_{\text {out }}$
$\square \operatorname{sepF}(v)=\#$ separation faces that contain v

Canonical order - implementation

Algorithm CanonicalOrder

initialize;
for $k=n$ to 3 do
choose $v_{k} \neq v_{1}, v_{2}$ such that
$-\operatorname{sepf}(v)=0$ or

- or $F(v)=\{f\}$, out $\mathrm{V}(f)=3$ and $\operatorname{out} \mathrm{E}(f)=2$
replace v_{k} with path $P=w_{p} \ldots w_{q}$ in $f_{\text {out }}$;
forall $p-1 \leq i \leq q$ do
- $f_{\text {out }}=$ current outerface

■ $F(v)=$ faces that contain v

- $F(e)=$ faces that contain e
- out $\mathrm{V}(f)=\#$ vertices of f on $f_{\text {out }}$

■ outE $(f)=\#$ edges of f on $f_{\text {out }}$

- $\operatorname{sepF}(v)=\#$ separation faces that contain v
remove face $\left\{v_{k}, w_{i}, w_{i+1}\right\}$ from $F\left(w_{i}\right)$ and $F\left(w_{i+1}\right)$;

Canonical order - implementation

Algorithm CanonicalOrder

initialize;
for $k=n$ to 3 do
choose $v_{k} \neq v_{1}, v_{2}$ such that
$-\operatorname{sepf}(v)=0$ or

- or $F(v)=\{f\}$, out $\mathrm{V}(f)=3$ and $\operatorname{out} \mathrm{E}(f)=2$
replace v_{k} with path $P=w_{p} \ldots w_{q}$ in $f_{\text {out }}$;
forall $p-1 \leq i \leq q$ do
- $f_{\text {out }}=$ current outerface

■ $F(v)=$ faces that contain v

- $F(e)=$ faces that contain e

■ out $V(f)=\#$ vertices of f on $f_{\text {out }}$
■ outE $(f)=\#$ edges of f on $f_{\text {out }}$

- $\operatorname{sepF}(v)=\#$ separation faces that contain v
remove face $\left\{v_{k}, w_{i}, w_{i+1}\right\}$ from $F\left(w_{i}\right)$ and $F\left(w_{i+1}\right)$;
forall $w \in w_{p-1} P w_{q+1}$ do
forall $f \in F(w)$ do
L update outV (f);
forall $e \in w_{p-1} P w_{q+1}$ do

forall $f \in F(e)$ do
update outE (f);

Canonical order - implementation

Algorithm CanonicalOrder

initialize;
for $k=n$ to 3 do
choose $v_{k} \neq v_{1}, v_{2}$ such that
$-\operatorname{sepf}(v)=0$ or

- or $F(v)=\{f\}$, out $\mathrm{V}(f)=3$ and $\operatorname{out} \mathrm{E}(f)=2$
replace v_{k} with path $P=w_{p} \ldots w_{q}$ in $f_{\text {out }}$;
forall $p-1 \leq i \leq q$ do
- $f_{\text {out }}=$ current outerface

■ $F(v)=$ faces that contain v

- $F(e)=$ faces that contain e

■ out $V(f)=\#$ vertices of f on $f_{\text {out }}$
■ outE $(f)=\#$ edges of f on $f_{\text {out }}$

- $\operatorname{sepF}(v)=\#$ separation faces that contain v
remove face $\left\{v_{k}, w_{i}, w_{i+1}\right\}$ from $F\left(w_{i}\right)$ and $F\left(w_{i+1}\right)$;
forall $w \in w_{p-1} P w_{q+1}$ do forall $f \in F(w)$ do L update out $\mathrm{V}(f)$;
forall $w \in P \cup N(P)$ do
forall $e \in w_{p-1} P w_{q+1}$ do forall $f \in F(e)$ do forall $f \in F(w)$ do L update $\operatorname{sep} F(w)$;
 update outE (f);

Canonical order - implementation

Algorithm CanonicalOrder

initialize;
for $k=n$ to 3 do
choose $v_{k} \neq v_{1}, v_{2}$ such that
$-\operatorname{sepf}(v)=0$ or

- or $F(v)=\{f\}$, out $\mathrm{V}(f)=3$ and $\operatorname{out} \mathrm{E}(f)=2$
replace v_{k} with path $P=w_{p} \ldots w_{q}$ in $f_{\text {out }}$; forall $p-1 \leq i \leq q$ do
- $f_{\text {out }}=$ current outerface
- $F(v)=$ faces that contain v
- $F(e)=$ faces that contain e

■ out $\mathrm{V}(f)=\#$ vertices of f on $f_{\text {out }}$
■ outE $(f)=\#$ edges of f on $f_{\text {out }}$
$\square \operatorname{sepF}(v)=\#$ separation faces that contain v
remove face $\left\{v_{k}, w_{i}, w_{i+1}\right\}$ from $F\left(w_{i}\right)$ and $F\left(w_{i+1}\right)$;
forall $w \in w_{p-1} P w_{q+1}$ do forall $f \in F(w)$ do update outV (f);
forall $e \in w_{p-1} P w_{q+1}$ do forall $f \in F(e)$ do update outE (f);

Lemma.

Algorithm CanonicalOrder computes a canonical order of a plane graph in $\mathcal{O}(n)$ time.

Canonical order - example

Literature
■ [HGD Ch. 6.5] canonical order
■ [dFPP90] de Fraysseix, Pach, Pollack "How to draw a planar graph on a grid", Combinatorica, 1990

■ [Kant96] Kant "Drawing planar graphs using the canonical ordering", Algorithmica, 1996

- [BBC11] Badent, Brandes, Cornelsen "More Canonical Ordering", JGAA, 2011

