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Motivation

� So far we looked at planar and straight-line drawings
of trees and series-parallel graphs.

� Why straight-line? Why planar?

� Bennett, Ryall, Spaltzeholz and Gooch, 2007
“The Aesthetics of Graph Visualization”

� crossings reduce readability

� bends reduce readability
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Planar graphs

� Characterisation: A graph is planar iff it contains neither a K5 nor a K3,3 minor.
[Kuratowski 1930, Wagner 1936]

� Recognition: For a graph G with n vertices, there is an O(n) time algorithm to
test if G is planar. [Hopcroft & Tarjan 1974]
� Also computes an embedding in O(n).
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� Edges:
1 : {(1, 5), (1, 2), (1, 3)}
2 : {(2, 1), (2, 5), (2, 3)}
3 : {(3, 1), (3, 2), (3, 5), (3, 4), (3, 6)}
4 : {(4, 3), (4, 5)}
5 : {(5, 6), (5, 4), (5, 3), (5, 2), (5, 1)}
6 : {(6, 3), (6, 5)}
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Planar graphs

� Embedding of planar graph:
� clockwise circular order of the edges incident to each vertex
� outerface (clockwise order of edges)
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� Edges:
1 : {(1, 5), (1, 2), (1, 3)}
2 : {(2, 1), (2, 5), (2, 3)}
3 : {(3, 1), (3, 2), (3, 5), (3, 4), (3, 6)}
4 : {(4, 3), (4, 5)}
5 : {(5, 6), (5, 4), (5, 3), (5, 2), (5, 1)}
6 : {(6, 3), (6, 5)}

� Outerface:
1 : {(1, 3), (3, 6), (6, 5), (5, 1)}
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� Straight-line drawing: Every planar graph has an embedding where the edges
are straight-line segments. [Wagner 1936, Fáry 1948, Stein 1951]
� The algorithms implied by this theory produce drawings with area not bounded

by any polynomial on n.
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Planar graphs

� Straight-line drawing: Every planar graph has an embedding where the edges
are straight-line segments. [Wagner 1936, Fáry 1948, Stein 1951]
� The algorithms implied by this theory produce drawings with area not bounded

by any polynomial on n.

� Every 3-connected planar graph has an embedding with convex polygons as its
faces (i.e., implies straight lines). [Tutte 1963: How to draw a graph]
� Idea: Place vertices in the barycentre of neighbours.
� Drawback: Requires large grids.

� Coin graph: Every planar graph is a circle contact graph
(implies straight-line drawing). [Koebe 1936]
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Planar graphs

� Every planar graph has at most 3n− 6 edges
� A planar triangulation is a planar graph with 3n− 6 edges

� We focus on triangulations:
� A plane (inner) triangulation is a plane graph where

every (inner) face is a triangle.

with planar embedding

� Properties of planar triangulations:

� Every face is a triangle
� graph is 3-connected
� Unique embedding (up to choice of outerface)
� Every plane graph is subgraph of a plane triangulation
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drawing of size O(n2).
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� To obtain Gi+1, add vi+1 to Gi so that
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� Neighbours of vi+1 in Gi have to form path of

length at least two. v1 v2
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Planar straight-line drawings

Goal:
For an n-vertex planar graph create a planar straight-line
drawing of size O(n2).

Idea (refined).
� Start with singe edge (v1, v2). Let this be G2.
� To obtain Gi+1, add vi+1 to Gi so that

neighbours of vi+1 are on the outer face of Gi.
� Neighbours of vi+1 in Gi have to form path of

length at least two. v1 v2

Idea.
Create drawing incrementally by adding vertices

vi+1
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Canonical order – definition

Definition.
Let G = (V, E) be a triangulated plane graph on n ≥ 3 vertices.
An order π = (v1, v2, . . . , vn) is called a canonical order, if the
following conditions hold for each k, 3 ≤ k ≤ n:

� (C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

� (C2) Edge (v1, v2) belongs to the outer face of Gk.

� (C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors ofvk+1 in Gk appear on the boundary of Gk
consecutively.
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Canonical order – definition

Definition.
Let G = (V, E) be a triangulated plane graph on n ≥ 3 vertices.
An order π = (v1, v2, . . . , vn) is called a canonical order, if the
following conditions hold for each k, 3 ≤ k ≤ n:

� (C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

� (C2) Edge (v1, v2) belongs to the outer face of Gk.

� (C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors ofvk+1 in Gk appear on the boundary of Gk
consecutively.

Compute:

� either {v3, v4, . . . vn} (adding vertices)

� or {vn, vn−1, . . . v3} (removing vertices)
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chord

G13

v1 v2

v16

v15

v14

edge joining two
nonadjacent
vertices in a cycle
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cutvertex

G11 is not
biconnected
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Canonical order – existence

Lemma.
Every triangulated plane graph has a canonical order.
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Every triangulated plane graph has a canonical order.
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Canonical order – existence

� Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions C1-C3 hold.

� Induction hypothesis: Vertices vn−1, . . . , vk+1 have been
chosen such that conditions C1-C3 hold for
k + 1 ≤ i ≤ n.

vk

v k
sh

ould
not be

adjacent to
a chord Have to show:

1. vk not adjacent to chord is
sufficient

2. Such vk exists

Proof.

� Induction step: Consider Gk. We search for vk.

Lemma.
Every triangulated plane graph has a canonical order.



12 - 1

Canonical order – existence

Claim 1. If vk is not adjacent to a
chord then removal of vk leaves the
graph biconnected.
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vkGk

not triangulated

v1 v2

Gk−1

Claim 1. If vk is not adjacent to a
chord then removal of vk leaves the
graph biconnected.

Gk

v1 v2

Claim 2.
There exists a vertex in Gk that is not
adjacent to a chord as choice for vk.
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vkGk

not triangulated

v1 v2

Gk−1

vk

Claim 1. If vk is not adjacent to a
chord then removal of vk leaves the
graph biconnected.

Gk

v1 v2

Claim 2.
There exists a vertex in Gk that is not
adjacent to a chord as choice for vk.

vertices with degree 2
exist in outerplanar graphs
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Canonical order – existence

vkGk

not triangulated

v1 v2

Gk−1

vk

This completes proof of Lemma. �

Claim 1. If vk is not adjacent to a
chord then removal of vk leaves the
graph biconnected.

Gk

v1 v2

Claim 2.
There exists a vertex in Gk that is not
adjacent to a chord as choice for vk.

vertices with degree 2
exist in outerplanar graphs
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� chords of Gk belong to faces:
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� chords are associated with separating faces
� vk belongs to no separating faces *

* except for these vertices!

� chords of Gk belong to faces:

� f has two vertices on the outerface and
one internal

� f has three vertices on the outerface
and at least two chords

� f has three consequtive vertices on the
outerface
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Gk

v1 v2

� chords are associated with separating faces
� vk belongs to no separating faces *

� fout = current outerface
� F(v) = faces that contain v
� F(e) = faces that contain e
� outV( f ) = # vertices of f on fout
� outE( f ) = # edges of f on fout
� sepF(v) = # separation faces that

contain v

* except for these vertices!
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Gk

v1 v2

� chords are associated with separating faces
� vk belongs to no separating faces *

f ∈ F(v) is separating iff
� outV( f )=3 or
� outV( f )=2 and outE( f )=0

� fout = current outerface
� F(v) = faces that contain v
� F(e) = faces that contain e
� outV( f ) = # vertices of f on fout
� outE( f ) = # edges of f on fout
� sepF(v) = # separation faces that

contain v

* except for these vertices!
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Canonical order – implementation

Algorithm CanonicalOrder- Initialization

forall v ∈ V do
sepF(v) ← 0;

forall f ∈ F do
outV( f ), outE( f ) ← 0;

forall v ∈ fout do
forall f ∈ F(v): f 6= fout do

outV( f )++;

forall e ∈ fout do
forall f ∈ F(e): f 6= fout do

outE( f )++;

� fout = current outerface
� F(v) = faces that contain v
� F(e) = faces that contain e
� outV( f ) = # vertices of f on fout
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Remove degree 2 vertex vk � fout = current outerface
� F(v) = faces that contain v
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Remove vk with sepF(vk)= 0 � fout = current outerface
� F(v) = faces that contain v
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� face fi contains edge (wi−1, wi)
of the outerface of Gk−1

� face f ′i contains edges of wi that
are in the interior of Gk−1
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Canonical order – implementation

Algorithm CanonicalOrder
initialize;
for k = n to 3 do

choose vk 6= v1, v2 such that
– sepf(v)=0 or
– or F(v) = { f }, outV( f )=3 and outE( f )=2
replace vk with path P = wp . . . wq in fout;
forall p− 1 ≤ i ≤ q do

remove face {vk,wi,wi+1} from F(wi)and F(wi+1);

forall w ∈ wp−1Pwq+1 do
forall f ∈ F(w) do

update outV( f );

forall e ∈ wp−1Pwq+1 do
forall f ∈ F(e) do

update outE( f );

� fout = current outerface
� F(v) = faces that contain v
� F(e) = faces that contain e
� outV( f ) = # vertices of f on fout
� outE( f ) = # edges of f on fout
� sepF(v) = # separation faces that

contain v
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initialize;
for k = n to 3 do

choose vk 6= v1, v2 such that
– sepf(v)=0 or
– or F(v) = { f }, outV( f )=3 and outE( f )=2
replace vk with path P = wp . . . wq in fout;
forall p− 1 ≤ i ≤ q do
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forall w ∈ wp−1Pwq+1 do
forall f ∈ F(w) do

update outV( f );

forall e ∈ wp−1Pwq+1 do
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Lemma.
Algorithm CanonicalOrder
computes a canonical order
of a plane graph in O(n)
time.

� fout = current outerface
� F(v) = faces that contain v
� F(e) = faces that contain e
� outV( f ) = # vertices of f on fout
� outE( f ) = # edges of f on fout
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forall w ∈ P ∪ N(P) do
forall f ∈ F(w) do

update sepF(w);
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Canonical order – example
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Order:
{v1, v2, v3, v4, v5, v6, v7, v8, v9}

H



19

Literature

� [dFPP90] de Fraysseix, Pach, Pollack ”How to draw a planar graph on a grid”,
Combinatorica, 1990

� [HGD Ch. 6.5] canonical order

� [Kant96] Kant ”Drawing planar graphs using the canonical ordering”,
Algorithmica, 1996

� [BBC11] Badent, Brandes, Cornelsen ”More Canonical Ordering”,
JGAA, 2011


	Canonical order
	Definition
	Example
	Existence
	Implementation
	Implementation
	Implementation
	Implementation
	Implementation
	Implementation

	Literature

