Visualisation of graphs

Planar straight-line drawings

 Shift Method
Antonios Symvonis • Chrysanthi Raftopoulou

Fall semester 2020

Planar straight-line drawings

Theorem. [De Fraysseix, Pach, Pollack '90]
Every n-vertex planar graph has a planar straight-line drawing of size $(2 n-4) \times(n-2)$.

Theorem. [Schnyder '90] Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times(n-2)$.

Planar straight-line drawings

Theorem. [De Fraysseix, Pach, Pollack '90]
Every n-vertex planar graph has a planar straight-line drawing of size $(2 n-4) \times(n-2)$.

Idea: Use the canonical order.
\square Start with single edge $\left(v_{1}, v_{2}\right)$. Let this be G_{2}.

- To obtain G_{i+1}, add v_{i+1} to G_{i} so that neighbours of v_{i+1} are on the outer face of G_{i}.
■ Neighbours of v_{i+1} in G_{i} have to form path of length at least two.

Theorem. [Schnyder '90] Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times(n-2)$.

Canonical order - definition

Definition.
Let $G=(V, E)$ be a triangulated plane graph on $n \geq 3$ vertices. An order $\pi=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is called a canonical order, if the following conditions hold for each $k, 3 \leq k \leq n$:

Canonical order - definition

Definition.

Let $G=(V, E)$ be a triangulated plane graph on $n \geq 3$ vertices. An order $\pi=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is called a canonical order, if the following conditions hold for each $k, 3 \leq k \leq n$:
(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

Canonical order - definition

Definition.

Let $G=(V, E)$ be a triangulated plane graph on $n \geq 3$ vertices. An order $\pi=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is called a canonical order, if the following conditions hold for each $k, 3 \leq k \leq n$:
(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

- (C2) Edge $\left(v_{1}, v_{2}\right)$ belongs to the outer face of G_{k}.

Canonical order - definition

Definition.

Let $G=(V, E)$ be a triangulated plane graph on $n \geq 3$ vertices. An order $\pi=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is called a canonical order, if the following conditions hold for each $k, 3 \leq k \leq n$:
(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

- (C2) Edge $\left(v_{1}, v_{2}\right)$ belongs to the outer face of G_{k}.
- (C3) If $k<n$ then vertex v_{k+1} lies in the outer face of G_{k}, and all neighbors of v_{k+1} in G_{k} appear on the boundary of G_{k} consecutively.

Canonical order - definition

Definition.

Let $G=(V, E)$ be a triangulated plane graph on $n \geq 3$ vertices. An order $\pi=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is called a canonical order, if the following conditions hold for each $k, 3 \leq k \leq n$:
(C1) Vertices $\left\{v_{1}, \ldots v_{k}\right\}$ induce a biconnected internally triangulated graph; call it G_{k}.

- (C2) Edge $\left(v_{1}, v_{2}\right)$ belongs to the outer face of G_{k}.
- (C3) If $k<n$ then vertex v_{k+1} lies in the outer face of G_{k}, and all neighbors of v_{k+1} in G_{k} appear on the boundary of G_{k} consecutively.

Lemma.

Every triangulated plane graph has a canonical order.

Constraints

Constraints:

G_{k-1} is drawn such that

Constraints

Constraints:

G_{k-1} is drawn such that

- v_{1} is leftmost vertex, v_{2} is rightmost vertex,

Constraints

Constraints:

G_{k-1} is drawn such that

- v_{1} is leftmost vertex, v_{2} is rightmost vertex,
neighbors of v_{k} on G_{k-1} should be drawn x-monotone,
- v_{k} is placed above its neighbors on G_{k-1}.

Constraints

Constraints:

G_{k-1} is drawn such that
$\square v_{1}$ is leftmost vertex, v_{2} is rightmost vertex,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,

- v_{k} is placed above its neighbors on G_{k-1}.

Constraints

Constraints

Constraints

Constraints:

G_{k-1} is drawn such that

- v_{1} is leftmost vertex, v_{2} is rightmost vertex,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
- v_{k} is placed above its neighbors on G_{k-1}.
$G_{2}: v_{1}:(0,0), v_{2}:(1,0)$
■ Need to make room for v_{3}
- Shift v_{2} to the right

Constraints

Constraints:

G_{k-1} is drawn such that

- v_{1} is leftmost vertex, v_{2} is rightmost vertex,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
- v_{k} is placed above its neighbors on G_{k-1}.

$$
\begin{aligned}
& G_{2}: v_{1}:(0,0), v_{2}: \text { 1, } \\
& G_{3}: v_{1}:(0,0), v_{2}:(2,0), v_{3}:(1,1)
\end{aligned}
$$

Constraints

Constraints

Constraints

Constraints

Constraints

Constraints

Constraints

Constraints:

G_{k-1} is drawn such that

- v_{1} is leftmost vertex, v_{2} is rightmost vertex,
 boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
v_{k} is placed above its neighbors on G_{k-1}.
$G_{2}: v_{1}:(0,0), v_{2}:(1)$
$G_{3}: v_{1}:(0,0), v_{2}:(20), v_{3}:(1)$
$G_{4}: v_{1}:(0,0), v_{2}:(3,0), v_{3}:(2,1), v_{4}:(1,2)$
$G_{5}: v_{1}:(0,0), v_{2}:\left(4,0, v_{3}:(2,1), v_{4}:(1,2), v_{5}:(3,2)\right.$

Constraints

Constraints:

G_{k-1} is drawn such that

- v_{1} is leftmost vertex, v_{2} is rightmost vertex, boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
v_{k} is placed above its neighbors on G_{k-1}.
$G_{2}: v_{1}:(0,0), v_{2}:$
$G_{3}: v_{1}:(0,0), v_{2}:(2,1), v_{3}:(1,4)$
$G_{4}: v_{1}:(0,0), v_{2}:(3,0), v_{3}:(2,1), v_{4}:(1,2)$
$G_{5}: v_{1}:(0,0), v_{2}:\left(4,0, v_{3}:(2,1), v_{4}:(1,2), v_{5}:(3,2)\right.$
$G: v_{6}:(2,5)$

Height

Height

Placement of v_{6} depends on
\square the slope of $\left(v_{1}, v_{4}\right),\left(v_{2}, v_{5}\right)$

- and the length of $\left(v_{1}, v_{2}\right)$ (which is at most $n-2$)

Height

Placement of v_{6} depends on
\square the slope of $\left(v_{1}, v_{4}\right),\left(v_{2}, v_{5}\right)$
\square and the length of $\left(v_{1}, v_{2}\right)$ (which is at most $n-2$)

Can the height exceed $\mathcal{O}(n)$?

Height

Height

- v_{3} at height 1

Height

- v_{3} at height 1
- v_{4}, v_{5} at height 2

Height

- v_{3} at height 1
- v_{4}, v_{5} at height 2
- v_{6}, v_{7} at height 3

Height

- v_{3} at height 1
- v_{4}, v_{5} at height 2
- v_{6}, v_{7} at height 3
- $v_{2 i}, v_{2 i+1}$ at height i

Height

- v_{3} at height 1
- v_{4}, v_{5} at height 2
- v_{6}, v_{7} at height 3
- $v_{2 i}, v_{2 i+1}$ at height i
- v_{n-2}, v_{n-1} at height $\frac{n-2}{2}$

Height

■ Slope for $\left(v_{1}, v_{n-2}\right)=\frac{n-2}{2}$
\square Slope for $\left(v_{2}, v_{n-1}\right)=-\frac{n-2}{2}$

- Length of $\left(v_{1}, v_{2}\right)=n-2$
$\square v_{3}$ at height 1
- v_{4}, v_{5} at height 2
- v_{6}, v_{7} at height 3
- $v_{2 i}, v_{2 i+1}$ at height i
- v_{n-2}, v_{n-1} at height $\frac{n-2}{2}$

Height

v_{n} above $\frac{(n-2)^{2}}{4}$

- Slope for $\left(v_{1}, v_{n-2}\right)=\frac{n-2}{2}$
\square Slope for $\left(v_{2}, v_{n-1}\right)=-\frac{n-2}{2}$
- Length of $\left(v_{1}, v_{2}\right)=n-2$
$\square v_{3}$ at height 1
- v_{4}, v_{5} at height 2
- v_{6}, v_{7} at height 3
- $v_{2 i}, v_{2 i+1}$ at height i
- v_{n-2}, v_{n-1} at height $\frac{n-2}{2}$

Height

Stretching?

■ decrease the height

- increase the width
\square vertices on the grid?

Height

Stretching?

■ decrease the height

- increase the width
- vertices on the grid?

Shifting

- control slopes
\square additional shifting at each step

Constraints

Constraints:

G_{k-1} is drawn such that

- v_{1} is leftmost vertex, v_{2} is rightmost vertex,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slope ± 1,

Constraints

Constraints:

G_{k-1} is drawn such that

- v_{1} is leftmost vertex, v_{2} is rightmost vertex,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slope ± 1,

Constraints

Constraints:

G_{k-1} is drawn such that

- v_{1} is leftmost vertex, v_{2} is rightmost vertex,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slope ± 1,

Constraints

Constraints:

G_{k-1} is drawn such that

- v_{1} is leftmost vertex, v_{2} is rightmost vertex,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slope ± 1,

Constraints

Constraints:

G_{k-1} is drawn such that

- v_{1} is leftmost vertex, v_{2} is rightmost vertex,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slope ± 1,

Constraints

Constraints:

G_{k-1} is drawn such that

- v_{1} is leftmost vertex, v_{2} is rightmost vertex,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slope ± 1,

Constraints

Constraints:

G_{k-1} is drawn such that

- v_{1} is leftmost vertex, v_{2} is rightmost vertex,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slope ± 1,

Constraints

Constraints:

G_{k-1} is drawn such that

- v_{1} is leftmost vertex, v_{2} is rightmost vertex,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is

Constraints

Constraints:

G_{k-1} is drawn such that

- v_{1} is leftmost vertex, v_{2} is rightmost vertex,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is

Constraints

Constraints:

G_{k-1} is drawn such that

- v_{1} is leftmost vertex, v_{2} is rightmost vertex,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is

Constraints

Constraints:

G_{k-1} is drawn such that

- v_{1} is leftmost vertex, v_{2} is rightmost vertex,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slope ± 1,

Constraints

Constraints:

G_{k-1} is drawn such that

- v_{1} is leftmost vertex, v_{2} is rightmost vertex,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slope ± 1,

Constraints

Constraints:

G_{k-1} is drawn such that

- v_{1} is leftmost vertex, v_{2} is rightmost vertex,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slope ± 1,

Constraints

Constraints:

G_{k-1} is drawn such that

- v_{1} is leftmost vertex, v_{2} is rightmost vertex,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is

Constraints

Constraints:

G_{k-1} is drawn such that

- v_{1} is leftmost vertex, v_{2} is rightmost vertex,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,

Constraints

Remarks:

- 2 shifts per step
- width $<2 n$
- height $<n$

Shift method

Algorithm invariants/constraints:

G_{k-1} is drawn such that
$\square v_{1}$ is on $(0,0), v_{2}$ is on $(2 k-4,0)$,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
■ each edge of the boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slopes ± 1.

Shift method

Algorithm invariants/constraints:

G_{k-1} is drawn such that

- v_{1} is on $(0,0), v_{2}$ is on $(2 k-4,0)$,

■ boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
■ each edge of the boundary of G_{k-1} (minus edge $\left.\left(v_{1}, v_{2}\right)\right)$ is drawn with slopes ± 1.

Shift method

Algorithm invariants/constraints:

G_{k-1} is drawn such that

- v_{1} is on $(0,0), v_{2}$ is on $(2 k-4,0)$,

■ boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
■ each edge of the boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slopes ± 1.

Shift method

Algorithm invariants/constraints:

G_{k-1} is drawn such that

- v_{1} is on $(0,0), v_{2}$ is on $(2 k-4,0)$,

■ boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
■ each edge of the boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slopes ± 1.

Shift method

Algorithm invariants/constraints:

G_{k-1} is drawn such that

- v_{1} is on $(0,0), v_{2}$ is on $(2 k-4,0)$,

■ boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
■ each edge of the boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slopes ± 1.

Shift method

Algorithm invariants/constraints:

G_{k-1} is drawn such that

- v_{1} is on $(0,0), v_{2}$ is on $(2 k-4,0)$,

■ boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
■ each edge of the boundary of G_{k-1} (minus edge $\left.\left(v_{1}, v_{2}\right)\right)$ is drawn with slopes ± 1.

Shift method

Algorithm invariants/constraints:

G_{k-1} is drawn such that

- v_{1} is on $(0,0), v_{2}$ is on $(2 k-4,0)$,

■ boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
■ each edge of the boundary of G_{k-1} (minus edge $\left.\left(v_{1}, v_{2}\right)\right)$ is drawn with slopes ± 1.

Shift method

Algorithm invariants/constraints:

G_{k-1} is drawn such that

- v_{1} is on $(0,0), v_{2}$ is on $(2 k-4,0)$,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
■ each edge of the boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slopes ± 1.

Shift method

Algorithm invariants/constraints:

G_{k-1} is drawn such that

- v_{1} is on $(0,0), v_{2}$ is on $(2 k-4,0)$,

■ boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
■ each edge of the boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slopes ± 1.

Shift method

Algorithm invariants/constraints:

G_{k-1} is drawn such that

- v_{1} is on $(0,0), v_{2}$ is on $(2 k-4,0)$,
\square boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
■ each edge of the boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slopes ± 1.
- Why is v_{k} on grid?

Shift method

Algorithm invariants/constraints:

G_{k-1} is drawn such that

- v_{1} is on $(0,0), v_{2}$ is on $(2 k-4,0)$,

■ boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn x-monotone,
■ each edge of the boundary of G_{k-1} (minus edge $\left(v_{1}, v_{2}\right)$) is drawn with slopes ± 1.

- Why is v_{k} on grid?

Shift method

Lemma.

Every two vertices on the outerface of G_{k-1} have even Manhattan distance.

Shift method

Lemma.

Every two vertices on the outerface of G_{k-1} have even Manhattan distance.

- u_{i} and u_{i+1} consecutive on the outerface of G_{k-1}

Shift method

Lemma.

Every two vertices on the outerface of G_{k-1} have even Manhattan distance.

- u_{i} and u_{i+1} consecutive on the outerface of G_{k-1}

Shift method

Lemma.

Every two vertices on the outerface of G_{k-1} have even Manhattan distance.

- u_{i} and u_{i+1} consecutive on the outerface of G_{k-1}

$$
\begin{aligned}
& d\left(u_{i}, u_{i+1}\right)=\left|d x_{i}\right|+\left|d y_{i}\right| \text { even } \\
& \left|d x_{i}\right| \pm\left|d y_{i}\right| \text { even }
\end{aligned}
$$

Shift method

Lemma.

Every two vertices on the outerface of G_{k-1} have even Manhattan distance.

- u_{i} and u_{i+1} consecutive on the outerface of G_{k-1}

$$
d\left(u_{i}, u_{i+1}\right)=\left|d x_{i}\right|+\left|d y_{i}\right| \text { even }
$$

$$
\left|d x_{i}\right| \pm\left|d y_{i}\right| \text { even }
$$

- $u_{i}, u_{i+\ell}$ on the outerface of G_{k-1}

Shift method

Lemma.

Every two vertices on the outerface of G_{k-1} have even Manhattan distance.

- u_{i} and u_{i+1} consecutive on the outerface of G_{k-1}

$$
\begin{aligned}
& d\left(u_{i}, u_{i+1}\right)=\left|d x_{i}\right|+\left|d y_{i}\right| \text { even } \\
& \left|d x_{i}\right| \pm\left|d y_{i}\right| \text { even }
\end{aligned}
$$

- $u_{i}, u_{i+\ell}$ on the outerface of G_{k-1}
$d\left(u_{i}, u_{\ell}\right)=\sum_{j=i}^{\ell-1}\left|d x_{j}\right|+\lambda_{j}\left|d y_{j}\right|, \lambda_{j}= \pm 1 \quad$ even

Shift method

Lemma.

Every two vertices on the outerface of G_{k-1} have even Manhattan distance.

- u_{i} and u_{i+1} consecutive on the outerface of G_{k-1}

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Shift method - example

Which internal nodes are shifted?

Shift method - example

Which internal nodes are shifted?

- An internal node shifts with its covering outer vertex
- Define covering

Shift method - dominating

Shift method - dominating

Shift method - dominating

Observations.

■ Each internal vertex is covered exactly once.

- Covering relation defines a tree in G
\square and a forest in $G_{i}, 1 \leq i \leq n-1$.

Shift method - dominating

Observations.

- Each internal vertex is covered exactly once.
- Covering relation defines a tree in G
\square and a forest in $G_{i}, 1 \leq i \leq n-1$.

Shift method - dominating

Observations.

- Each internal vertex is covered exactly once.
- Covering relation defines a tree in G
\square and a forest in $G_{i}, 1 \leq i \leq n-1$.

Shift method - dominating

Observations.

- Each internal vertex is covered exactly once.
- Covering relation defines a tree in G
\square and a forest in $G_{i}, 1 \leq i \leq n-1$.

Shift method - dominating

Definition.

$L\left(w_{i}\right)$ is the set of vertices covered by w_{i}
$L\left(w_{i}\right)$ is the subtree of the covering tree rooted at w_{i}

Observations.

- Each internal vertex is covered exactly once.
- Covering relation defines a tree in G
\square and a forest in $G_{i}, 1 \leq i \leq n-1$.

Shift method - example

Shift method - planarity

Observations.

■ Each internal vertex is covered exactly once.

- Covering relation defines a tree in G
- and a forest in $G_{i}, 1 \leq i \leq n-1$.

Shift method - planarity

```
Lemma. Let 0< \delta1 \leq \delta 2 \leq . \leq 林 \in\mathbb{N}\mathrm{ , such}
that }\mp@subsup{\delta}{q}{}-\mp@subsup{\delta}{p}{}\geq2\mathrm{ and even.
If we shift L(wi) by }\mp@subsup{\delta}{i}{}\mathrm{ to the right, we get a planar straight-line drawing.
```


Observations.

- Each internal vertex is covered exactly once.
- Covering relation defines a tree in G
- and a forest in $G_{i}, 1 \leq i \leq n-1$.

Shift method - planarity

```
Lemma. Let 0< \delta1 \leq \delta 2 \leq w \leq \delta t \in\mathbb{N}\mathrm{ , such}
that }\mp@subsup{\delta}{q}{}-\mp@subsup{\delta}{p}{}\geq2\mathrm{ and even.
If we shift L(wi) by }\mp@subsup{\delta}{i}{}\mathrm{ to the right, we get a planar straight-line drawing.
```

Proof by induction:

Observations.

- Each internal vertex is covered exactly once.
- Covering relation defines a tree in G
- and a forest in $G_{i}, 1 \leq i \leq n-1$.

Shift method - pseudocode

```
Let }\mp@subsup{v}{1}{},\ldots,\mp@subsup{v}{n}{}\mathrm{ be a canonical order of G
for }i=1\mathrm{ to 3 do
    L(vi})\leftarrow{\mp@subsup{v}{i}{}
P(\mp@subsup{v}{1}{})\leftarrow(0,0);P(\mp@subsup{v}{2}{})\leftarrow(2,0),P(\mp@subsup{v}{3}{})\leftarrow(1,1)
for }k=4\mathrm{ to }n\mathrm{ do
```

-

Shift method - pseudocode

```
Let \(v_{1}, \ldots, v_{n}\) be a canonical order of \(G\)
for \(i=1\) to 3 do
    \(L\left(v_{i}\right) \leftarrow\left\{v_{i}\right\}\)
\(P\left(v_{1}\right) \leftarrow(0,0) ; P\left(v_{2}\right) \leftarrow(2,0), P\left(v_{3}\right) \leftarrow(1,1)\)
for \(k=4\) to \(n\) do
    Let \(w_{1}=v_{1}, w_{2}, \ldots, w_{t-1}, w_{t}=v_{2}\) denote the boundary of \(G_{k-1}\)
    and let \(w_{p}, \ldots, w_{q}\) be the neighbours of \(v_{k}\)
    for \(\forall v \in \cup_{j=p+1}^{q-1} L\left(w_{j}\right)\) do
    \(\lfloor x(v) \leftarrow x(v)+1\)
    for \(\forall v \in \cup_{j=q}^{t} L\left(w_{j}\right)\) do
    \(\lfloor x(v) \leftarrow x(v)+2\)
    \(P\left(v_{k}\right) \leftarrow\) intersection of \(+1 /-1\) edges from \(P\left(w_{p}\right)\) and \(P\left(w_{q}\right)\)
    \(L\left(v_{k}\right) \leftarrow \cup_{j=p+1}^{q-k} L\left(w_{j}\right) \cup\left\{v_{k}\right\}\)
```


Shift method - pseudocode

```
Let v}\mp@subsup{v}{1}{},\ldots,\mp@subsup{v}{n}{}\mathrm{ be a canonical order of G
for }i=1\mathrm{ to 3 do
    L(\mp@subsup{v}{i}{})\leftarrow{\mp@subsup{v}{i}{}}
P(\mp@subsup{v}{1}{})\leftarrow(0,0);P(\mp@subsup{v}{2}{})\leftarrow(2,0),P(\mp@subsup{v}{3}{})\leftarrow(1,1)
for }k=4\mathrm{ to }n\mathrm{ do
```



```
    and let }\mp@subsup{w}{p}{},\ldots,\mp@subsup{w}{q}{}\mathrm{ be the neighbours of }\mp@subsup{v}{k}{
    for }\forallv\in\mp@subsup{\cup}{j=p+1}{q-1}L(\mp@subsup{w}{j}{})\mathrm{ do
        x(v)\leftarrowx(v)+1
    for }\forallv\in\mp@subsup{\cup}{j=q}{t}L(\mp@subsup{w}{j}{})\mathrm{ do
    Lx(v)\leftarrowx(v)+2
    P(\mp@subsup{v}{k}{})\leftarrow intersection of +1/-1 edges from P(worp) and P(wq)
    L(v
```


Shift method - linear time implementation

Idea:

- Instead of storing explicit x-coordinates, we store x differences.
■ We need a spanning tree rooted at v_{1}

Shift method - linear time implementation

Idea:

- Instead of storing explicit x-coordinates, we store x differences.
■ We need a spanning tree rooted at v_{1}

Shift method - linear time implementation

Idea:

- Instead of storing explicit x-coordinates, we store x differences.
■ We need a spanning tree rooted at v_{1}
Outerface of G_{k-1}
\square at w_{i} store $\Delta x\left(w_{i}\right)=x\left(w_{i}\right)-x\left(w_{i-1}\right)$

Shift method - linear time implementation

Idea:

- Instead of storing explicit x-coordinates, we store x differences.
■ We need a spanning tree rooted at v_{1}
Outerface of G_{k-1}
\square at w_{i} store $\Delta x\left(w_{i}\right)=x\left(w_{i}\right)-x\left(w_{i-1}\right)$

Shift method - linear time implementation

Idea:

- Instead of storing explicit x-coordinates, we store x differences.
■ We need a spanning tree rooted at v_{1}

Outerface of G_{k-1}

\square at w_{i} store $\Delta x\left(w_{i}\right)=x\left(w_{i}\right)-x\left(w_{i-1}\right)$

Adding v_{k}

Shift method - linear time implementation

Idea:

- Instead of storing explicit x-coordinates, we store x differences.
- We need a spanning tree rooted at v_{1}

Outerface of G_{k-1}
\square at w_{i} store $\Delta x\left(w_{i}\right)=x\left(w_{i}\right)-x\left(w_{i-1}\right)$

Adding v_{k}

- Shifting is performed by increasing $\Delta x\left(w_{p+1}\right)$ and $\Delta x\left(w_{q}\right)$

Shift method - linear time implementation

Idea:

- Instead of storing explicit x-coordinates, we store x differences.
- We need a spanning tree rooted at v_{1}

Outerface of G_{k-1}

\square at w_{i} store $\Delta x\left(w_{i}\right)=x\left(w_{i}\right)-x\left(w_{i-1}\right)$

Adding v_{k}

- Shifting is performed by increasing $\Delta x\left(w_{p+1}\right)$ and $\Delta x\left(w_{q}\right)$
$\square x\left(v_{k}\right)$ depends on $x\left(w_{p}\right)$ and $x\left(w_{q}\right)$

Shift method - linear time implementation

Idea:

- Instead of storing explicit x-coordinates, we store x differences.
- We need a spanning tree rooted at v_{1}

Outerface of G_{k-1}

\square at w_{i} store $\Delta x\left(w_{i}\right)=x\left(w_{i}\right)-x\left(w_{i-1}\right)$

Adding v_{k}

- Shifting is performed by increasing $\Delta x\left(w_{p+1}\right)$ and $\Delta x\left(w_{q}\right)$
$\square x\left(v_{k}\right)$ depends on $x\left(w_{p}\right)$ and $x\left(w_{q}\right)$
$\square x\left(v_{k}\right)$ as x difference from w_{p}

Shift method - linear time implementation

Idea:

- Instead of storing explicit x-coordinates, we store x differences.
- We need a spanning tree rooted at v_{1}

Outerface of G_{k-1}

\square at w_{i} store $\Delta x\left(w_{i}\right)=x\left(w_{i}\right)-x\left(w_{i-1}\right)$

Adding v_{k}

\square Shifting is performed by increasing $\Delta x\left(w_{p+1}\right)$ and $\Delta x\left(w_{q}\right)$
$\square x\left(v_{k}\right)$ depends on $x\left(w_{p}\right)$ and $x\left(w_{q}\right)$
$\square x\left(v_{k}\right)$ as x difference from w_{p}

- $x\left(w_{q}\right)$ as x difference from v_{k}

Shift method - linear time implementation

Idea:

- Instead of storing explicit x-coordinates, we store x differences.
- We need a spanning tree rooted at v_{1}

Outerface of G_{k-1}

\square at w_{i} store $\Delta x\left(w_{i}\right)=x\left(w_{i}\right)-x\left(w_{i-1}\right)$

Adding v_{k}

\square Shifting is performed by increasing $\Delta x\left(w_{p+1}\right)$ and $\Delta x\left(w_{q}\right)$
$\square x\left(v_{k}\right)$ depends on $x\left(w_{p}\right)$ and $x\left(w_{q}\right)$
$\square x\left(v_{k}\right)$ as x difference from w_{p}

- $x\left(w_{q}\right)$ as x difference from v_{k}
- w_{p+1} covered by v_{k}
$\rightarrow x\left(w_{p+1}\right)$ as x difference from $x\left(v_{k}\right)$

Shift method - linear time implementation

Idea:

- Instead of storing explicit x-coordinates, we store x differences.
- We need a spanning tree rooted at v_{1}

Outerface of G_{k-1}

\square at w_{i} store $\Delta x\left(w_{i}\right)=x\left(w_{i}\right)-x\left(w_{i-1}\right)$

Adding v_{k}

\square Shifting is performed by increasing $\Delta x\left(w_{p+1}\right)$ and $\Delta x\left(w_{q}\right)$
$\square x\left(v_{k}\right)$ depends on $x\left(w_{p}\right)$ and $x\left(w_{q}\right)$
$\square x\left(v_{k}\right)$ as x difference from w_{p}
$\square x\left(w_{q}\right)$ as x difference from v_{k}

- w_{p+1} covered by v_{k}
$\rightarrow x\left(w_{p+1}\right)$ as x difference from $x\left(v_{k}\right)$

Shift method - linear time implementation
■ Step 1. computex $\left(v_{k}\right)$ and $y\left(v_{k}\right)$

Shift method - linear time implementation
■ Step 1. computex $\left(v_{k}\right)$ and $y\left(v_{k}\right)$

$$
\begin{aligned}
& \text { (1) } x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right) \\
& \text { (2) } y\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)+y\left(w_{p}\right)\right)
\end{aligned}
$$

Shift method - linear time implementation
■ Step 1. computex $\left(v_{k}\right)$ and $y\left(v_{k}\right)$
■ Step 1 revised. compute $x\left(v_{k}\right)-x\left(w_{p}\right)$ and $y\left(v_{k}\right)$

$$
\begin{aligned}
& \text { (1) } x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right) \\
& \text { (2) } y\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)+y\left(w_{p}\right)\right)
\end{aligned}
$$

Shift method - linear time implementation
■ Step 1. computex $\left(v_{k}\right)$ and $y\left(v_{k}\right)$

- Step 1 revised. compute $x\left(v_{k}\right)-x\left(w_{p}\right)$ and $y\left(v_{k}\right)$

(1) $x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$
(2) $y\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)+y\left(w_{p}\right)\right)$
(3) $x\left(v_{k}\right)-x\left(w_{p}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$

Shift method - linear time implementation
■ Step 1. computex $\left(v_{k}\right)$ and $y\left(v_{k}\right)$
■ Step 1 revised. compute $x\left(v_{k}\right)-x\left(w_{p}\right)$ and $y\left(v_{k}\right)$

(1) $x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$
(2) $y\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)+y\left(w_{p}\right)\right)$
(3) $x\left(v_{k}\right)-x\left(w_{p}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$

Shift method - linear time implementation

■ Step 1. compute $x\left(v_{k}\right)$ and $y\left(v_{k}\right)$
■ Step 1 revised. compute $x\left(v_{k}\right)-x\left(w_{p}\right)$ and $y\left(v_{k}\right)$ Step 2- Calculations.

- $\Delta x\left(w_{p+1}\right)++, \Delta x\left(w_{q}\right)++$

(1) $x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$
(2) $y\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)+y\left(w_{p}\right)\right)$
(3) $x\left(v_{k}\right)-x\left(w_{p}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$

Shift method - linear time implementation

■ Step 1. compute $x\left(v_{k}\right)$ and $y\left(v_{k}\right)$
■ Step 1 revised. compute $x\left(v_{k}\right)-x\left(w_{p}\right)$ and $y\left(v_{k}\right)$

Step 2- Calculations.

- $\Delta x\left(w_{p+1}\right)++, \Delta x\left(w_{q}\right)++$
$\square x\left(w_{q}\right)-x\left(w_{p}\right)=\Delta x\left(w_{p+1}\right)+\ldots+\Delta x\left(w_{q}\right)$

(1) $x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$
(2) $y\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)+y\left(w_{p}\right)\right)$
(3) $x\left(v_{k}\right)-x\left(w_{p}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$

Shift method - linear time implementation

■ Step 1. compute $x\left(v_{k}\right)$ and $y\left(v_{k}\right)$
■ Step 1 revised. compute $x\left(v_{k}\right)-x\left(w_{p}\right)$ and $y\left(v_{k}\right)$

Step 2- Calculations.

- $\Delta x\left(w_{p+1}\right)++, \Delta x\left(w_{q}\right)++$
$\square x\left(w_{q}\right)-x\left(w_{p}\right)=\Delta x\left(w_{p+1}\right)+\ldots+\Delta x\left(w_{q}\right)$
- $\Delta x\left(v_{k}\right)$
by (3)

(1) $x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$
(2) $y\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)+y\left(w_{p}\right)\right)$
(3) $x\left(v_{k}\right)-x\left(w_{p}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$

Shift method - linear time implementation

■ Step 1. compute $x\left(v_{k}\right)$ and $y\left(v_{k}\right)$
■ Step 1 revised. compute $x\left(v_{k}\right)-x\left(w_{p}\right)$ and $y\left(v_{k}\right)$

Step 2- Calculations.

- $\Delta x\left(w_{p+1}\right)++, \Delta x\left(w_{q}\right)++$
$\square x\left(w_{q}\right)-x\left(w_{p}\right)=\Delta x\left(w_{p+1}\right)+\ldots+\Delta x\left(w_{q}\right)$
- $\Delta x\left(v_{k}\right)$ by (3)
$\square \Delta x\left(w_{q}\right)=x\left(w_{q}\right)-x\left(w_{p}\right)-\Delta x\left(v_{k}\right)$

(1) $x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$
(2) $y\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)+y\left(w_{p}\right)\right)$
(3) $x\left(v_{k}\right)-x\left(w_{p}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$

Shift method - linear time implementation

■ Step 1. compute $x\left(v_{k}\right)$ and $y\left(v_{k}\right)$
■ Step 1 revised. compute $x\left(v_{k}\right)-x\left(w_{p}\right)$ and $y\left(v_{k}\right)$

Step 2- Calculations.

- $\Delta x\left(w_{p+1}\right)^{++}, \Delta x\left(w_{q}\right)++$
- $x\left(w_{q}\right)-x\left(w_{p}\right)=\Delta x\left(w_{p+1}\right)+\ldots+\Delta x\left(w_{q}\right)$
- $\Delta x\left(v_{k}\right)$
by (3)
- $\Delta x\left(w_{q}\right)=x\left(w_{q}\right)-x\left(w_{p}\right)-\Delta x\left(v_{k}\right)$

■ $\Delta x\left(w_{p+1}\right)=\Delta x\left(w_{p+1}\right)-\Delta x\left(v_{k}\right)$

(1) $x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$
(2) $y\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)+y\left(w_{p}\right)\right)$
(3) $x\left(v_{k}\right)-x\left(w_{p}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$

Shift method - linear time implementation

■ Step 1. compute $x\left(v_{k}\right)$ and $y\left(v_{k}\right)$
■ Step 1 revised. compute $x\left(v_{k}\right)-x\left(w_{p}\right)$ and $y\left(v_{k}\right)$

Step 2- Calculations.

- $\Delta x\left(w_{p+1}\right)^{++}, \Delta x\left(w_{q}\right)++$
- $x\left(w_{q}\right)-x\left(w_{p}\right)=\Delta x\left(w_{p+1}\right)+\ldots+\Delta x\left(w_{q}\right)$
- $\Delta x\left(v_{k}\right)$
by (3)
- $\Delta x\left(w_{q}\right)=x\left(w_{q}\right)-x\left(w_{p}\right)-\Delta x\left(v_{k}\right)$
- $\Delta x\left(w_{p+1}\right)=\Delta x\left(w_{p+1}\right)-\Delta x\left(v_{k}\right)$
- $y\left(v_{k}\right)$
by (2)

(1) $x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$
(2) $y\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)+y\left(w_{p}\right)\right)$
(3) $x\left(v_{k}\right)-x\left(w_{p}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$

Shift method - linear time implementation

■ Step 1. computex($\left.v_{k}\right)$ and $y\left(v_{k}\right)$
■ Step 1 revised. compute $x\left(v_{k}\right)-x\left(w_{p}\right)$ and $y\left(v_{k}\right)$

Step 2- Calculations.

- $\Delta x\left(w_{p+1}\right)++, \Delta x\left(w_{q}\right)++$
$\square x\left(w_{q}\right)-x\left(w_{p}\right)=\Delta x\left(w_{p+1}\right)+\ldots+\Delta x\left(w_{q}\right)$
- $\Delta x\left(v_{k}\right)$
by (3)
- $\Delta x\left(w_{q}\right)=x\left(w_{q}\right)-x\left(w_{p}\right)-\Delta x\left(v_{k}\right)$
$\square \Delta x\left(w_{p+1}\right)=\Delta x\left(w_{p+1}\right)-\Delta x\left(v_{k}\right)$
- $y\left(v_{k}\right)$
by (2)

After v_{n}, use preorder traversal to compute x-coordinates
(1) $x\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)+x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$
(2) $y\left(v_{k}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)+y\left(w_{p}\right)\right)$
(3) $x\left(v_{k}\right)-x\left(w_{p}\right)=\frac{1}{2}\left(x\left(w_{q}\right)-x\left(w_{p}\right)+y\left(w_{q}\right)-y\left(w_{p}\right)\right)$

Literature

■ [dFPP90] de Fraysseix, Pach, Pollack "How to draw a planar graph on a grid", Combinatorica, 1990

