Visualisation of graphs

Planar straight-line drawings Schnyder realiser

Antonios Symvonis • Chrysanthi Raftopoulou

The original slides of this presentation were created by researchers at Karlsruhe Institute of Technology (KIT), TU Wien, U Wuerzburg, U Konstanz,
The original presentation was modified/updated by A. Symvonis and C. Raftopoulou

Planar straight-line drawings

Theorem. [De Fraysseix, Pach, Pollack '90]
Every n-vertex planar graph has a planar straight-line drawing of size $(2 n-4) \times(n-2)$.

Theorem. [Schnyder '90] Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times(n-2)$.

Planar straight-line drawings

Theorem. [De Fraysseix, Pach, Pollack '90]
Every n-vertex planar graph has a planar straight-line drawing of size $(2 n-4) \times(n-2)$.

Theorem. [Schnyder '90] Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times(n-2)$.

Idea.

- Fix outer triangle.

Planar straight-line drawings

Theorem. [De Fraysseix, Pach, Pollack '90]
Every n-vertex planar graph has a planar straight-line drawing of size $(2 n-4) \times(n-2)$.

Theorem. [Schnyder '90] Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times(n-2)$.

Idea.

- Fix outer triangle.
- Compute coordinates of inner vertices
- based on outer triangle

Planar straight-line drawings

Theorem. [De Fraysseix, Pach, Pollack '90]
Every n-vertex planar graph has a planar straight-line drawing of size $(2 n-4) \times(n-2)$.

Theorem. [Schnyder '90] Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times(n-2)$.

Idea.

- Fix outer triangle.
- Compute coordinates of inner vertices

■ based on outer triangle

- and how much space there has to be for other vertices

Planar straight-line drawings

Theorem. [De Fraysseix, Pach, Pollack '90]
Every n-vertex planar graph has a planar straight-line drawing of size $(2 n-4) \times(n-2)$.

Theorem. [Schnyder '90] Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times(n-2)$.

Idea.

- Fix outer triangle.
- Compute coordinates of inner vertices

■ based on outer triangle

- and how much space there has to be for other vertices
■ using barycentric coordinates.

Planar straight-line drawings

Theorem. [De Fraysseix, Pach, Pollack '90]
Every n-vertex planar graph has a planar straight-line drawing of size $(2 n-4) \times(n-2)$.

Theorem. [Schnyder '90] Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times(n-2)$.

Idea.

$$
(2 n-5) \times(2 n-5)
$$

- Fix outer triangle.

■ Compute coordinates of inner vertices
■ based on outer triangle

- and how much space there has to be for other vertices
■ using barycentric coordinates.

Barycentric coordinates

> Definition.
> Let $A, B, C, P \in \mathbb{R}^{2}$.
> The barycentric coordinates of P with respect to $\triangle A B C$ are a triple $(\alpha, \beta, \gamma) \in \mathbb{R}_{\geq 0}^{3}$ such that
> $\quad \alpha+\beta+\gamma=1$
> $\quad P=\alpha A+\beta B+\gamma C$.

Barycentric coordinates

Definition.
 Let $A, B, C, P \in \mathbb{R}^{2}$.
 The barycentric coordinates of P with respect to $\triangle A B C$ are a triple $(\alpha, \beta, \gamma) \in \mathbb{R}_{\geq 0}^{3}$ such that
 $\square \alpha+\beta+\gamma=1$
 - $P=\alpha A+\beta B+\gamma C$.

Barycentric coordinates

Definition.
 Let $A, B, C, P \in \mathbb{R}^{2}$.
 The barycentric coordinates of P with respect to $\triangle A B C$ are a triple $(\alpha, \beta, \gamma) \in \mathbb{R}_{\geq 0}^{3}$ such that
 $\square \alpha+\beta+\gamma=1$
 - $P=\alpha A+\beta B+\gamma C$.

Barycentric coordinates

Definition.
 Let $A, B, C, P \in \mathbb{R}^{2}$.
 The barycentric coordinates of P with respect to $\triangle A B C$ are a triple $(\alpha, \beta, \gamma) \in \mathbb{R}_{\geq 0}^{3}$ such that
 ■ $\alpha+\beta+\gamma=1$
 - $P=\alpha A+\beta B+\gamma C$.

Barycentric coordinates

Definition.
 Let $A, B, C, P \in \mathbb{R}^{2}$.
 The barycentric coordinates of P with respect to $\triangle A B C$ are a triple $(\alpha, \beta, \gamma) \in \mathbb{R}_{\geq 0}^{3}$ such that
 $\square \alpha+\beta+\gamma=1$
 ■ $P=\alpha A+\beta B+\gamma C$.

Barycentric coordinates

Definition.
 Let $A, B, C, P \in \mathbb{R}^{2}$.
 The barycentric coordinates of P with respect to $\triangle A B C$ are a triple $(\alpha, \beta, \gamma) \in \mathbb{R}_{\geq 0}^{3}$ such that
 $\square \alpha+\beta+\gamma=1$
 - $P=\alpha A+\beta B+\gamma C$.

Barycentric representation

Definition.

A barycentric representation of a graph $G=(V, E)$ is an assignment of barycentric coordinates to the vertices of G; i.e. it is injective map $\phi: V \rightarrow \mathbb{R}_{>0}^{3}, v \mapsto\left(v_{1}, v_{2}, v_{3}\right)$ with the following properties:

- $v_{1}+v_{2}+v_{3}=1$ for all $v \in V$
\square for each $\{x, y\} \in E$ and each $z \in V \backslash\{x, y\}$ there exists $k \in\{1,2,3\}$ with $x_{k}<z_{k}$ and $y_{k}<z_{k}$.

Barycentric representation

Definition.

A barycentric representation of a graph $G=(V, E)$ is an assignment of barycentric coordinates to the vertices of G; i.e. it is injective map $\phi: V \rightarrow \mathbb{R}_{\geq 0}^{3}, v \mapsto\left(v_{1}, v_{2}, v_{3}\right)$ with the following properties:

- $v_{1}+v_{2}+v_{3}=1$ for all $v \in V$
- for each $\{x, y\} \in E$ and each $z \in V \backslash\{x, y\}$ there exists $k \in\{1,2,3\}$ with $x_{k}<z_{k}$ and $y_{k}<z_{k}$.

Barycentric representation

Definition.

A barycentric representation of a graph $G=(V, E)$ is an assignment of barycentric coordinates to the vertices of G; i.e. it is injective map $\phi: V \rightarrow \mathbb{R}_{\geq 0}^{3}, v \mapsto\left(v_{1}, v_{2}, v_{3}\right)$ with the following properties:

- $v_{1}+v_{2}+v_{3}=1$ for all $v \in V$
- for each $\{x, y\} \in E$ and each $z \in V \backslash\{x, y\}$ there exists $k \in\{1,2,3\}$ with $x_{k}<z_{k}$ and $y_{k}<z_{k}$.

Barycentric representation

Definition.

A barycentric representation of a graph $G=(V, E)$ is an assignment of barycentric coordinates to the vertices of G; i.e. it is injective map $\phi: V \rightarrow \mathbb{R}_{\geq 0}^{3}, v \mapsto\left(v_{1}, v_{2}, v_{3}\right)$ with the following properties:

- $v_{1}+v_{2}+v_{3}=1$ for all $v \in V$
- for each $\{x, y\} \in E$ and each $z \in V \backslash\{x, y\}$ there exists $k \in\{1,2,3\}$ with $x_{k}<z_{k}$ and $y_{k}<z_{k}$.

Barycentric representation

Definition.

A barycentric representation of a graph $G=(V, E)$ is an assignment of barycentric coordinates to the vertices of G; i.e. it is injective map $\phi: V \rightarrow \mathbb{R}_{\geq 0}^{3}, v \mapsto\left(v_{1}, v_{2}, v_{3}\right)$ with the following properties:

- $v_{1}+v_{2}+v_{3}=1$ for all $v \in V$
- for each $\{x, y\} \in E$ and each $z \in V \backslash\{x, y\}$ there exists $k \in\{1,2,3\}$ with $x_{k}<z_{k}$ and $y_{k}<z_{k}$.

Barycentric representations \& planar graphs

Lemma.

Let $\phi: v \mapsto\left(v_{1}, v_{2}, v_{3}\right)$ be a barycentric representation of a graph $G=(V, E)$ and let $A, B, C \in \mathbb{R}^{2}$ in general position. Then the mapping

$$
f: v \in V \mapsto v_{1} A+v_{2} B+v_{3} C
$$

gives a planar drawing of G inside $\triangle A B C$.

Barycentric representations \& planar graphs

Lemma.

Let $\phi: v \mapsto\left(v_{1}, v_{2}, v_{3}\right)$ be a barycentric representation of a graph $G=(V, E)$ and let $A, B, C \in \mathbb{R}^{2}$ in general position. Then the mapping

$$
f: v \in V \mapsto v_{1} A+v_{2} B+v_{3} C
$$

gives a planar drawing of G inside $\triangle A B C$.
Proof. ■ No vertices occur "inside" an edge

Barycentric representations \& planar graphs

Lemma.

Let $\phi: v \mapsto\left(v_{1}, v_{2}, v_{3}\right)$ be a barycentric representation of a graph $G=(V, E)$ and let $A, B, C \in \mathbb{R}^{2}$ in general position. Then the mapping

$$
f: v \in V \mapsto v_{1} A+v_{2} B+v_{3} C
$$

gives a planar drawing of G inside $\triangle A B C$.
Proof. ■ No vertices occur "inside" an edge
\square No pair of edges $\{u, v\}$ and $\left\{u^{\prime}, v^{\prime}\right\}$ cross:

Barycentric representations \& planar graphs

Lemma.

Let $\phi: v \mapsto\left(v_{1}, v_{2}, v_{3}\right)$ be a barycentric representation of a graph $G=(V, E)$ and let $A, B, C \in \mathbb{R}^{2}$ in general position. Then the mapping

$$
f: v \in V \mapsto v_{1} A+v_{2} B+v_{3} C
$$

gives a planar drawing of G inside $\triangle A B C$.
Proof. ■ No vertices occur "inside" an edge
\square No pair of edges $\{u, v\}$ and $\left\{u^{\prime}, v^{\prime}\right\}$ cross:

Barycentric representations \& planar graphs

Lemma.

Let $\phi: v \mapsto\left(v_{1}, v_{2}, v_{3}\right)$ be a barycentric representation of a graph $G=(V, E)$ and let $A, B, C \in \mathbb{R}^{2}$ in general position. Then the mapping

$$
f: v \in V \mapsto v_{1} A+v_{2} B+v_{3} C
$$

gives a planar drawing of G inside $\triangle A B C$.
Proof. ■ No vertices occur "inside" an edge
\square No pair of edges $\{u, v\}$ and $\left\{u^{\prime}, v^{\prime}\right\}$ cross:
$u_{i}^{\prime}>u_{i}, v_{i} \quad v_{j}^{\prime}>u_{j}, v_{j} \quad u_{k}>u_{k}^{\prime}, v_{k}^{\prime} \quad v_{l}>u_{l}^{\prime}, v_{l}^{\prime}$

Barycentric representations \& planar graphs

Lemma.

Let $\phi: v \mapsto\left(v_{1}, v_{2}, v_{3}\right)$ be a barycentric representation of a graph $G=(V, E)$ and let $A, B, C \in \mathbb{R}^{2}$ in general position. Then the mapping

$$
f: v \in V \mapsto v_{1} A+v_{2} B+v_{3} C
$$

gives a planar drawing of G inside $\triangle A B C$.
Proof. ■ No vertices occur "inside" an edge
■ No pair of edges $\{u, v\}$ and $\left\{u^{\prime}, v^{\prime}\right\}$ cross:
$u_{i}^{\prime}>u_{i}, v_{i} \quad v_{j}^{\prime}>u_{j}, v_{j} \quad u_{k}>u_{k}^{\prime}, v_{k}^{\prime} \quad v_{l}>u_{l}^{\prime}, v_{l}^{\prime}$
$\Rightarrow\{i, j\} \cap\{k, l\}=\varnothing$

$w \log i=j=1 \Rightarrow u_{1}^{\prime}, v_{1}^{\prime}>u_{1}, v_{1}$

Barycentric representations \& planar graphs

Lemma.

Let $\phi: v \mapsto\left(v_{1}, v_{2}, v_{3}\right)$ be a barycentric representation of a graph $G=(V, E)$ and let $A, B, C \in \mathbb{R}^{2}$ in general position. Then the mapping

$$
f: v \in V \mapsto v_{1} A+v_{2} B+v_{3} C
$$

gives a planar drawing of G inside $\triangle A B C$.
Proof. ■ No vertices occur "inside" an edge
■ No pair of edges $\{u, v\}$ and $\left\{u^{\prime}, v^{\prime}\right\}$ cross:
$u_{i}^{\prime}>u_{i}, v_{i} \quad v_{j}^{\prime}>u_{j}, v_{j} \quad u_{k}>u_{k}^{\prime}, v_{k}^{\prime} \quad v_{l}>u_{l}^{\prime}, v_{l}^{\prime}$
$\Rightarrow\{i, j\} \cap\{k, l\}=\varnothing$

wlog $i=j=1 \Rightarrow u_{1}^{\prime}, v_{1}^{\prime}>u_{1}, v_{1} \Rightarrow$ separated by straight line

Barycentric representations \& planar graphs

Lemma.

Let $\phi: v \mapsto\left(v_{1}, v_{2}, v_{3}\right)$ be a barycentric representation of a graph $G=(V, E)$ and let $A, B, C \in \mathbb{R}^{2}$ in general position. Then the mapping

$$
f: v \in V \mapsto v_{1} A+v_{2} B+v_{3} C
$$

gives a planar drawing of G inside $\triangle A B C$.
Proof. ■ No vertices occur "inside" an edge
■ No pair of edges $\{u, v\}$ and $\left\{u^{\prime}, v^{\prime}\right\}$ cross:
$u_{i}^{\prime}>u_{i}, v_{i} \quad v_{j}^{\prime}>u_{j}, v_{j} \quad u_{k}>u_{k}^{\prime}, v_{k}^{\prime} \quad v_{l}>u_{l}^{\prime}, v_{l}^{\prime}$
$\Rightarrow\{i, j\} \cap\{k, l\}=\varnothing$

How to get vertices on grid?

Angle labeling

Observation 1.
Let $v \mapsto\left(v_{1}, v_{2}, v_{3}\right)$ be a barycentric representation of a triangulated plane graph $G=(V, E)$.
We can uniquely label each angle $\angle(x y, x z)$ with $k \in\{1,2,3\}$.

Angle labeling

Observation 1.
Let $v \mapsto\left(v_{1}, v_{2}, v_{3}\right)$ be a barycentric representation of a triangulated plane graph $G=(V, E)$.
We can uniquely label each angle $\angle(x y, x z)$ with $k \in\{1,2,3\}$.

Angle labeling

Observation 1.
Let $v \mapsto\left(v_{1}, v_{2}, v_{3}\right)$ be a barycentric representation of a triangulated plane graph $G=(V, E)$.
We can uniquely label each angle $\angle(x y, x z)$ with $k \in\{1,2,3\}$.

Angle labeling

Observation 2.
Let $v \mapsto\left(v_{1}, v_{2}, v_{3}\right)$ be a barycentric representation of a triangulated plane graph $G=(V, E)$.
Around a vertex:

- all angles with label i are consecutive
- all three angles appear

Angle labeling

Observation 2.
Let $v \mapsto\left(v_{1}, v_{2}, v_{3}\right)$ be a barycentric representation of a triangulated plane graph $G=(V, E)$.
Around a vertex:
\square all angles with label i are consecutive

- all three angles appear

Angle labeling

Observation 2.
Let $v \mapsto\left(v_{1}, v_{2}, v_{3}\right)$ be a barycentric representation of a triangulated plane graph $G=(V, E)$.
Around a vertex:
\square all angles with label i are consecutive

- all three angles appear

Angle labeling

Observation 2.
Let $v \mapsto\left(v_{1}, v_{2}, v_{3}\right)$ be a barycentric representation of a triangulated plane graph $G=(V, E)$.
Around a vertex:
\square all angles with label i are consecutive

- all three angles appear

Angle labeling

Observation 2.
Let $v \mapsto\left(v_{1}, v_{2}, v_{3}\right)$ be a barycentric representation of a triangulated plane graph $G=(V, E)$.
Around a vertex:
\square all angles with label i are consecutive

- all three angles appear

Angle labeling

Observation 2.
Let $v \mapsto\left(v_{1}, v_{2}, v_{3}\right)$ be a barycentric representation of a triangulated plane graph $G=(V, E)$.
Around a vertex:
\square all angles with label i are consecutive

- all three angles appear

Schnyder labeling

Definition.

A Schnyder labeling (normal labeling) of a triangulated plane graph G is a labeling of all internal angles with labels 1, 2 and 3 such that:

Schnyder labeling

Definition.

A Schnyder labeling (normal labeling) of a triangulated plane graph G is a labeling of all internal angles with labels 1, 2 and 3 such that:
Faces Each internal face contain vertices with all three labels 1, 2 and 3 appearing in a counterclockwise order.

Schnyder labeling

Definition.

A Schnyder labeling (normal labeling) of a triangulated plane graph G is a labeling of all internal angles with labels 1, 2 and 3 such that:
Faces Each internal face contain vertices with all three labels 1, 2 and 3 appearing in a counterclockwise order.

Vertices The ccw order of labels around each vertex consists of a nonempty interval of 1's followed by a nonempty interval of 2's followed by a nonempty interval of 3 's.

Schnyder labeling-example

Schnyder realiser

■ Schnyder labeling induces an edge labeling

Schnyder realiser

■ Schnyder labeling induces an edge labeling

Schnyder realiser

■ Schnyder labeling induces an edge labeling

Schnyder realiser

■ Schnyder labeling induces an edge labeling

Schnyder realiser

■ Schnyder labeling induces an edge labeling

Schnyder realiser

■ Schnyder labeling induces an edge labeling

Schnyder realiser

■ Schnyder labeling induces an edge labeling

Schnyder realiser

■ Schnyder labeling induces an edge labeling

Schnyder realiser

■ Schnyder labeling induces an edge labeling

Schnyder realiser

■ Schnyder labeling induces an edge labeling

Schnyder realiser

- Schnyder labeling induces an edge labeling

Definition.
A Schnyder forest or realiser of a triangulated plane graph $G=(V, E)$ is a partition of the inner edges of E into three sets of oriented edges T_{1}, T_{2}, T_{3} such that for each inner vertex $v \in V$ holds:
$\square v$ has one outgoing edge in each of T_{1}, T_{2}, and T_{3}.
The ccw order of edges around v is: leaving in T_{1}, entering in T_{3}, leaving in T_{2}, entering in T_{1}, leaving in T_{3}, entering in T_{2}.

Schnyder realiser - existence

Lemma. [Kampen 1976]

Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a contractible edge $\{a, x\}$ in $G, x \neq b, c$.

Schnyder realiser - existence

Lemma. [Kampen 1976]
Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a contractible edge $\{a, x\}$ in $G, x \neq b, c$.

Definition.

Edge $\{a, x\}$, where $x \neq b, c$, is a contractible edge in G, if
a and x have exactly 2 common neighbors

Schnyder realiser - existence

Lemma. [Kampen 1976]

Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a contractible edge $\{a, x\}$ in $G, x \neq b, c$.

Definition.

Edge $\{a, x\}$, where $x \neq b, c$, is a contractible edge in G, if
a and x have exactly 2 common neighbors

Schnyder realiser - existence

Lemma. [Kampen 1976]

Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a contractible edge $\{a, x\}$ in $G, x \neq b, c$.

Definition.

Edge $\{a, x\}$, where $x \neq b, c$, is a contractible edge in G, if
a and x have exactly 2 common neighbors

- Neighbors of a induce an outerplanar graph

Schnyder realiser - existence

Lemma. [Kampen 1976]

Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a contractible edge $\{a, x\}$ in $G, x \neq b, c$.

Definition.

Edge $\{a, x\}$, where $x \neq b, c$, is a contractible edge in G, if
a and x have exactly 2 common neighbors

- Neighbors of a induce an outerplanar graph
- There exists $x \neq b, c$ with degree 2

Schnyder realiser - existence

Lemma. [Kampen 1976]

Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a contractible edge $\{a, x\}$ in $G, x \neq b, c$.

Schnyder realiser - existence

Lemma. [Kampen 1976]

Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a contractible edge $\{a, x\}$ in $G, x \neq b, c$.

Schnyder realiser - existence

Lemma. [Kampen 1976]

Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a contractible edge $\{a, x\}$ in $G, x \neq b, c$.

Theorem.

Every triangulated plane graph has a Schnyder labeling.

Schnyder realiser - existence

Lemma. [Kampen 1976]

Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a contractible edge $\{a, x\}$ in $G, x \neq b, c$.

Theorem.

Every triangulated plane graph has a Schnyder labeling.
Proof by induction on \# vertices via edge contractions.

Schnyder realiser - existence

Lemma. [Kampen 1976]

Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a contractible edge $\{a, x\}$ in $G, x \neq b, c$.

Theorem.

Every triangulated plane graph has a Schnyder labeling.
Proof by induction on \# vertices via edge contractions.

Schnyder realiser - existence

Lemma. [Kampen 1976]
Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a contractible edge $\{a, x\}$ in $G, x \neq b, c$.

Theorem.

Every triangulated plane graph has a Schnyder labeling.
Proof by induction on \# vertices via edge contractions.

Schnyder realiser - existence

Lemma. [Kampen 1976]
Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a contractible edge $\{a, x\}$ in $G, x \neq b, c$.

Theorem.

Every triangulated plane graph has a Schnyder labeling.
Proof by induction on \# vertices via edge contractions.

Schnyder realiser - existence

Lemma. [Kampen 1976]
Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a contractible edge $\{a, x\}$ in $G, x \neq b, c$.

Theorem.

Every triangulated plane graph has a Schnyder labeling.
Proof by induction on \# vertices via edge contractions.

Schnyder realiser - existence

Lemma. [Kampen 1976]
Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a contractible edge $\{a, x\}$ in $G, x \neq b, c$.

Theorem.

Every triangulated plane graph has a Schnyder labeling.
Proof by induction on \# vertices via edge contractions.

Schnyder realiser - existence

Lemma. [Kampen 1976]
Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a contractible edge $\{a, x\}$ in $G, x \neq b, c$.

Theorem.

Every triangulated plane graph has a Schnyder labeling.
Proof by induction on \# vertices via edge contractions.

Schnyder realiser - existence

Lemma. [Kampen 1976]
Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a contractible edge $\{a, x\}$ in $G, x \neq b, c$.

Theorem.

Every triangulated plane graph has a Schnyder labeling.
Proof also gives an algorithm to produce a Schnyder labeling. It can be implemented in $\mathcal{O}(n)$ time \ldots as exercise.

Schnyder realiser - existence

Lemma. [Kampen 1976]
Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a contractible edge $\{a, x\}$ in $G, x \neq b, c$.

Theorem.

Every triangulated plane graph has a Schnyder labeling.
Proof also gives an algorithm to produce a Schnyder labeling. It can be implemented in $\mathcal{O}(n)$ time \ldots as exercise.

Theorem and previous construction imply:

Corollary.

Every triangulated plane graph has a Schnyder realiser.

Schnyder realiser - properties

Schnyder realiser - properties

Schnyder realiser - properties

Schnyder realiser - properties

■ For each v there exists a directed red, blue, green path from v to a, b, c, respectively.

- No monochromatix cycle exists

Schnyder realiser - properties

■ For each v there exists a directed red, blue, green path from v to a, b, c, respectively.

- No monochromatix cycle exists

■ Each monochromatic subgraph is a tree!

Schnyder realiser - properties

■ For each v there exists a directed red, blue, green path from v to a, b, c, respectively.

- No monochromatix cycle exists

■ Each monochromatic subgraph is a tree!

■ The sinks of red/blue/green trees are the vertices a, b, c.

Schnyder realiser - properties

■ For each v there exists a directed red, blue, green path from v to a, b, c, respectively.

- No monochromatix cycle exists

■ Each monochromatic subgraph is a tree!

- The sinks of red/blue/green trees are the vertices a, b, c.

This is ensured by construction via contraction operation.
(Bonus: Can construct all valid Schnyder realiser.)

Schnyder realiser - canonical order

Adding v_{k+1} to graph G_{k}
$\square v_{k+1} w_{p} \in T_{1}$

- $v_{k+1} w_{q} \in T_{2}$
$\square w_{j} v_{k+1} \in T_{3}$

Schnyder realiser - canonical order

Adding v_{k+1} to graph G_{k}
$\square v_{k+1} w_{p} \in T_{1}$

- $v_{k+1} w_{q} \in T_{2}$
$\square w_{j} v_{k+1} \in T_{3}$

Schnyder realiser - canonical order

Adding v_{k+1} to graph G_{k}
$\square v_{k+1} w_{p} \in T_{1}$

- $v_{k+1} w_{q} \in T_{2}$
- $w_{j} v_{k+1} \in T_{3}$

Schnyder realiser - canonical order

Adding v_{k+1} to graph G_{k}
$\square v_{k+1} w_{p} \in T_{1}$

- $v_{k+1} w_{q} \in T_{2}$
- $w_{j} v_{k+1} \in T_{3}$

Schnyder realiser - canonical order

Adding v_{k+1} to graph G_{k}
$\square v_{k+1} w_{p} \in T_{1}$

- $v_{k+1} w_{q} \in T_{2}$
$\square w_{j} v_{k+1} \in T_{3}$

Schnyder realiser - canonical order

Adding v_{k+1} to graph G_{k}
$\square v_{k+1} w_{p} \in T_{1}$

- $v_{k+1} w_{q} \in T_{2}$
$\square w_{j} v_{k+1} \in T_{3}$

Schnyder realiser - canonical order

Adding v_{k+1} to graph G_{k}
$\square v_{k+1} w_{p} \in T_{1}$

- $v_{k+1} w_{q} \in T_{2}$
$\square w_{j} v_{k+1} \in T_{3}$

Schnyder realiser - canonical order

Adding v_{k+1} to graph G_{k}
$\square v_{k+1} w_{p} \in T_{1}$

- $v_{k+1} w_{q} \in T_{2}$
$\square w_{j} v_{k+1} \in T_{3}$

Schnyder realiser - canonical order

Adding v_{k+1} to graph G_{k}
$\square v_{k+1} w_{p} \in T_{1}$

- $v_{k+1} w_{q} \in T_{2}$
$\square w_{j} v_{k+1} \in T_{3}$

Schnyder realiser - canonical order

Adding v_{k+1} to graph G_{k}
$\square v_{k+1} w_{p} \in T_{1}$

- $v_{k+1} w_{q} \in T_{2}$
- $w_{j} v_{k+1} \in T_{3}$

Schnyder realiser - canonical order

Adding v_{k+1} to graph G_{k}
$\square v_{k+1} w_{p} \in T_{1}$

- $v_{k+1} w_{q} \in T_{2}$
$\square w_{j} v_{k+1} \in T_{3}$

Schnyder drawing

- How to get from Schnyder realiser to barycentric representation

$$
f: v \in V \mapsto v_{1} A+v_{2} B+v_{3} C
$$

Face regions

■ $P_{i}(v)$ path from v to source of T_{i}

Face regions

- $P_{i}(v)$ path from v to source of T_{i}
$\square R_{1}(v), R_{2}(v), R_{3}(v)$ are sets of faces

Face regions

- $P_{i}(v)$ path from v to source of T_{i}
$\square R_{1}(v), R_{2}(v), R_{3}(v)$ are sets of faces

Lemma.

- Paths $P_{1}(v), P_{2}(v), P_{3}(v)$ cross only at vertex v.

Face regions

- $P_{i}(v)$ path from v to source of T_{i}

Proof ...

$\square R_{1}(v), R_{2}(v), R_{3}(v)$ are sets of faces

Lemma.

- Paths $P_{1}(v), P_{2}(v), P_{3}(v)$ cross only at vertex v.

Face regions

- $P_{i}(v)$ path from v to source of T_{i}

Proof ...

Lemma.

- Paths $P_{1}(v), P_{2}(v), P_{3}(v)$ cross only at vertex v.

Face regions

- $P_{i}(v)$ path from v to source of T_{i}

Proof ...

$\square R_{1}(v), R_{2}(v), R_{3}(v)$ are sets of faces

Lemma.

- Paths $P_{1}(v), P_{2}(v), P_{3}(v)$ cross only at vertex v.

Face regions

- $P_{i}(v)$ path from v to source of T_{i}
$\square R_{1}(v), R_{2}(v), R_{3}(v)$ are sets of faces

Lemma.

- Paths $P_{1}(v), P_{2}(v), P_{3}(v)$ cross only at vertex v.

Proof ...

Face regions

- $P_{i}(v)$ path from v to source of T_{i}

Proof ...

$\square R_{1}(v), R_{2}(v), R_{3}(v)$ are sets of faces

Lemma.

- Paths $P_{1}(v), P_{2}(v), P_{3}(v)$ cross only at vertex v.

Face regions

- $P_{i}(v)$ path from v to source of T_{i}

Proof ...

$\square R_{1}(v), R_{2}(v), R_{3}(v)$ are sets of faces

Lemma.

- Paths $P_{1}(v), P_{2}(v), P_{3}(v)$ cross only at vertex v.
■ For inner vertices $u \neq v$ it holds that $u \in R_{i}(v) \Rightarrow R_{i}(u) \subsetneq R_{i}(v)$.

Face regions

- $P_{i}(v)$ path from v to source of T_{i}

Proof ...

$\square R_{1}(v), R_{2}(v), R_{3}(v)$ are sets of faces

Lemma.

- Paths $P_{1}(v), P_{2}(v), P_{3}(v)$ cross only at vertex v.
■ For inner vertices $u \neq v$ it holds that $u \in R_{i}(v) \Rightarrow R_{i}(u) \subsetneq R_{i}(v)$.

Face regions

- $P_{i}(v)$ path from v to source of T_{i}

Proof ...

$\square R_{1}(v), R_{2}(v), R_{3}(v)$ are sets of faces

Lemma.

- Paths $P_{1}(v), P_{2}(v), P_{3}(v)$ cross only at vertex v.
■ For inner vertices $u \neq v$ it holds that $u \in R_{i}(v) \Rightarrow R_{i}(u) \subsetneq R_{i}(v)$.

Face regions

- $P_{i}(v)$ path from v to source of T_{i}

Proof ...

$\square R_{1}(v), R_{2}(v), R_{3}(v)$ are sets of faces

Lemma.

- Paths $P_{1}(v), P_{2}(v), P_{3}(v)$ cross only at vertex v.
■ For inner vertices $u \neq v$ it holds that $u \in R_{i}(v) \Rightarrow R_{i}(u) \subsetneq R_{i}(v)$.

Schnyder drawing

■ Let barycentric coordinates of $v \in G \backslash\{a, b, c\}$
be $\left(v_{1}, v_{2}, v_{3}\right)$, where $v_{1}=\left|R_{1}(v)\right| /(2 n-5)$,
$v_{2}=\left|R_{2}(v)\right| /(2 n-5)$ and $v_{3}=\left|R_{3}(v)\right| /(2 n-5)$.

■ Set

- $A=(2 n-5,0)$
- $B=(0,2 n-5)$
- $C=(0,0)$

Schnyder drawing

■ Let barycentric coordinates of $v \in G \backslash\{a, b, c\}$
be $\left(v_{1}, v_{2}, v_{3}\right)$, where $v_{1}=\left|R_{1}(v)\right| /(2 n-5)$, $v_{2}=\left|R_{2}(v)\right| /(2 n-5)$ and $v_{3}=\left|R_{3}(v)\right| /(2 n-5)$.

Theorem.

■ Set

- $A=(2 n-5,0)$
- $B=(0,2 n-5)$
- $C=(0,0)$

The mapping

$$
f: v \mapsto\left(v_{1}, v_{2}, v_{3}\right)=\frac{1}{2 n-5}\left(\left|R_{1}(v)\right|,\left|R_{2}(v)\right|,\left|R_{3}(v)\right|\right)
$$

is a barycentric representation of G, which thus gives a planar straight-line drawing of G in a $(2 n-5) \times(2 n-5)$ grid.

Schnyder drawing

■ Let barycentric coordinates of $v \in G \backslash\{a, b, c\}$
be $\left(v_{1}, v_{2}, v_{3}\right)$, where $v_{1}=\left|R_{1}(v)\right| /(2 n-5)$, $v_{2}=\left|R_{2}(v)\right| /(2 n-5)$ and $v_{3}=\left|R_{3}(v)\right| /(2 n-5)$.

Theorem.

■ Set

- $A=(2 n-5,0)$
- $B=(0,2 n-5)$
- $C=(0,0)$

The mapping

$$
f: v \mapsto\left(v_{1}, v_{2}, v_{3}\right)=\frac{1}{2 n-5}\left(\left|R_{1}(v)\right|,\left|R_{2}(v)\right|,\left|R_{3}(v)\right|\right)
$$

is a barycentric representation of G, which thus gives a planar straight-line drawing of G in a $(2 n-5) \times(2 n-5)$ grid.

Proof. ■ Condition 1: $v_{1}+v_{2}+v_{3}=1$

Schnyder drawing

■ Let barycentric coordinates of $v \in G \backslash\{a, b, c\}$
be $\left(v_{1}, v_{2}, v_{3}\right)$, where $v_{1}=\left|R_{1}(v)\right| /(2 n-5)$,
$v_{2}=\left|R_{2}(v)\right| /(2 n-5)$ and $v_{3}=\left|R_{3}(v)\right| /(2 n-5)$.

Theorem.

The mapping

$$
f: v \mapsto\left(v_{1}, v_{2}, v_{3}\right)=\frac{1}{2 n-5}\left(\left|R_{1}(v)\right|,\left|R_{2}(v)\right|,\left|R_{3}(v)\right|\right)
$$

is a barycentric representation of G, which thus gives a planar straight-line drawing of G in a $(2 n-5) \times(2 n-5)$ grid.

Proof. ■ Condition 1: $v_{1}+v_{2}+v_{3}=1$

■ Set

- $A=(2 n-5,0)$
- $B=(0,2 n-5)$
- $C=(0,0)$

■ Condition 2: For each edge $\{u, v\}$ and vertex $w \neq u, v$ at least one of three is true: $w_{1}>u_{1}, v_{1}, \quad w_{2}>u_{2}, v_{2}, \quad w_{3}>u_{3}, v_{3}$.

Weak barycentric representation

Definition.

A weak barycentric representation of a graph $G=(V, E)$ is an injective map $v \in V \mapsto\left(v_{1}, v_{2}, v_{3}\right) \in \mathbb{R}^{3}$ with the following properties:

- $v_{1}+v_{2}+v_{3}=1$ for every $v \in V$
- for every $\{x, y\} \in E$ and every $z \in V \backslash\{x, y\}$ there is $k \in\{1,2,3\}$ with $\left(x_{k}, x_{k+1}\right)<_{\operatorname{lex}}\left(z_{k}, z_{k+1}\right)$ and $\left(y_{k}, y_{k+1}\right)<_{\text {lex }}\left(z_{k}, z_{k+1}\right)$.

Weak barycentric representation

Definition.

A weak barycentric representation of a graph $G=(V, E)$ is an injective map $v \in V \mapsto\left(v_{1}, v_{2}, v_{3}\right) \in \mathbb{R}^{3}$ with the following properties:

- $v_{1}+v_{2}+v_{3}=1$ for every $v \in V$
- for every $\{x, y\} \in E$ and every $z \in V \backslash\{x, y\}$ there is $k \in\{1,2,3\}$ with $\left(x_{k}, x_{k+1}\right)<\operatorname{lex}\left(z_{k}, z_{k+1}\right)$ and $\left(y_{k}, y_{k+1}\right)<_{\text {lex }}\left(z_{k}, z_{k+1}\right)$.

$$
y_{k}=z_{k} \text { and } y_{k+1}<z_{k+1}
$$

Weak barycentric representation

Definition.

A weak barycentric representation of a graph $G=(V, E)$ is an injective map $v \in V \mapsto\left(v_{1}, v_{2}, v_{3}\right) \in \mathbb{R}^{3}$ with the following properties:

- $v_{1}+v_{2}+v_{3}=1$ for every $v \in V$
- for every $\{x, y\} \in E$ and every $z \in V \backslash\{x, y\}$ there is $k \in\{1,2,3\}$ with $\left(x_{k}, x_{k+1}\right)<_{\operatorname{lex}}\left(z_{k}, z_{k+1}\right)$ and $\left(y_{k}, y_{k+1}\right)<_{\text {lex }}\left(z_{k}, z_{k+1}\right)$.

A weak barycentric representation i.e., either $y_{k}<z_{k}$ or still provides a planar drawing.

Weak barycentric representation

Definition.

A weak barycentric representation of a graph $G=(V, E)$ is an injective map $v \in V \mapsto\left(v_{1}, v_{2}, v_{3}\right) \in \mathbb{R}^{3}$ with the following properties:

- $v_{1}+v_{2}+v_{3}=1$ for every $v \in V$
- for every $\{x, y\} \in E$ and every $z \in V \backslash\{x, y\}$ there is $k \in\{1,2,3\}$ with $\left(x_{k}, x_{k+1}\right)<\operatorname{lex}\left(z_{k}, z_{k+1}\right)$ and $\left(y_{k}, y_{k+1}\right)<_{\text {lex }}\left(z_{k}, z_{k+1}\right)$.
i.e., either $y_{k}<z_{k}$ or
$y_{k}=z_{k}$ and $y_{k+1}<z_{k+1}$

A weak barycentric representation still provides a planar drawing.

Proof is similar to before.. and thus an exercise.

New barycentric coordinates

New barycentric coordinates

New barycentric coordinates

■ Set $v_{i}^{\prime}=\left|V\left(R_{i}(v)\right)\right|-\left|P_{i-1}(v)\right|$

New barycentric coordinates

■ Set $v_{i}^{\prime}=\left|V\left(R_{i}(v)\right)\right|-\left|P_{i-1}(v)\right|$
■ Additionally, for outer vertices set

- $a_{1}^{\prime}=n-2$
- $a_{2}^{\prime}=1$
- $a_{3}^{\prime}=0$
and analogously for b^{\prime} and c^{\prime}

New barycentric coordinates

■ Set $v_{i}^{\prime}=\left|V\left(R_{i}(v)\right)\right|-\left|P_{i-1}(v)\right|$
■ Additionally, for outer vertices set

- $a_{1}^{\prime}=n-2$
- $a_{2}^{\prime}=1$
- $a_{3}^{\prime}=0$
and analogously for b^{\prime} and c^{\prime}

Lemma.

For inner vertices $u \neq v$ it holds that

$$
u \in R_{i}(v) \Rightarrow\left(u_{i}^{\prime}, u_{i+1}^{\prime}\right)<_{\operatorname{lex}}\left(v_{i}^{\prime}, v_{i+1}^{\prime}\right)
$$

New barycentric coordinates

■ Set $v_{i}^{\prime}=\left|V\left(R_{i}(v)\right)\right|-\left|P_{i-1}(v)\right|$
■ Additionally, for outer vertices set

- $a_{1}^{\prime}=n-2$
- $a_{2}^{\prime}=1$
- $a_{3}^{\prime}=0$
and analogously for b^{\prime} and c^{\prime}

Lemma.

For inner vertices $u \neq v$ it holds that

$$
u \in R_{i}(v) \Rightarrow\left(u_{i}^{\prime}, u_{i+1}^{\prime}\right)<_{\operatorname{lex}}\left(v_{i}^{\prime}, v_{i+1}^{\prime}\right)
$$

New barycentric coordinates

■ Set $v_{i}^{\prime}=\left|V\left(R_{i}(v)\right)\right|-\left|P_{i-1}(v)\right|$
■ Additionally, for outer vertices set

- $a_{1}^{\prime}=n-2$
- $a_{2}^{\prime}=1$
- $a_{3}^{\prime}=0$
and analogously for b^{\prime} and c^{\prime}

Lemma.

For inner vertices $u \neq v$ it holds that

$$
u \in R_{i}(v) \Rightarrow\left(u_{i}^{\prime}, u_{i+1}^{\prime}\right)<_{\operatorname{lex}}\left(v_{i}^{\prime}, v_{i+1}^{\prime}\right)
$$

New barycentric coordinates

■ Set $v_{i}^{\prime}=\left|V\left(R_{i}(v)\right)\right|-\left|P_{i-1}(v)\right|$
■ Additionally, for outer vertices set

- $a_{1}^{\prime}=n-2$
- $a_{2}^{\prime}=1$
- $a_{3}^{\prime}=0$
and analogously for b^{\prime} and c^{\prime}

Lemma.

For inner vertices $u \neq v$ it holds that

$$
u \in R_{i}(v) \Rightarrow\left(u_{i}^{\prime}, u_{i+1}^{\prime}\right)<_{\operatorname{lex}}\left(v_{i}^{\prime}, v_{i+1}^{\prime}\right)
$$

Schnyder drawing

Theorem.
The mapping

$$
f: v \mapsto \frac{1}{n-1}\left(v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right)
$$

is a weak barycentric represenation of G.

Schnyder drawing

Theorem.

The mapping

$$
f: v \mapsto \frac{1}{n-1}\left(v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right)
$$

is a weak barycentric represenation of G.

Remarks.

- By setting $A=(n-1,0), B=(0, n-1), C=(0,0)$, one obtains a planar straight-line drawing of G on an $(n-2) \times(n-2)$ grid.

Schnyder drawing

Theorem.

The mapping

$$
f: v \mapsto \frac{1}{n-1}\left(v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right)
$$

is a weak barycentric represenation of G.

Remarks.

■ By setting $A=(n-1,0), B=(0, n-1), C=(0,0)$, one obtains a planar straight-line drawing of G on an $(n-2) \times(n-2)$ grid.

- To calculate all the coordinates, a constant number of tree traversals are enough.

Calculations

Compute:

- $p_{i}(v)=\left|P_{i}(v)\right|$ vertices on i-path from v
- $t_{i}(v)=\left|T_{i}(v)\right|$ vertices on i-subtree rooted at v
- $r_{i}(v)=\left|V\left(R_{i}(v)\right)\right|$ vertices in $R_{i}(v)$
- $v_{i}^{\prime}=\left|V\left(R_{i}(v)\right)\right|-\left|P_{i-1}(v)\right| i$-coordinate of v

Calculations

Compute:

- $p_{i}(v)=\left|P_{i}(v)\right|$ vertices on i-path from v
- $t_{i}(v)=\left|T_{i}(v)\right|$ vertices on i-subtree rooted at v
- $r_{i}(v)=\left|V\left(R_{i}(v)\right)\right|$ vertices in $R_{i}(v)$
$\square v_{i}^{\prime}=\left|V\left(R_{i}(v)\right)\right|-\left|P_{i-1}(v)\right| i$-coordinate of v

Calculations

Compute:

- $p_{i}(v)=\left|P_{i}(v)\right|$ vertices on i-path from v
- $t_{i}(v)=\left|T_{i}(v)\right|$ vertices on i-subtree rooted at v
- $r_{i}(v)=\left|V\left(R_{i}(v)\right)\right|$ vertices in $R_{i}(v)$
$\square v_{i}^{\prime}=\left|V\left(R_{i}(v)\right)\right|-\left|P_{i-1}(v)\right| i$-coordinate of v

Calculations

Compute:

- $p_{i}(v)=\left|P_{i}(v)\right|$ vertices on i-path from v
- $t_{i}(v)=\left|T_{i}(v)\right|$ vertices on i-subtree rooted at v
- $r_{i}(v)=\left|V\left(R_{i}(v)\right)\right|$ vertices in $R_{i}(v)$
- $v_{i}^{\prime}=\left|V\left(R_{i}(v)\right)\right|-\left|P_{i-1}(v)\right| i$-coordinate of v

Calculations

Compute:

- $p_{i}(v)=\left|P_{i}(v)\right|$ vertices on i-path from v
- $t_{i}(v)=\left|T_{i}(v)\right|$ vertices on i-subtree rooted at v
- $r_{i}(v)=\left|V\left(R_{i}(v)\right)\right|$ vertices in $R_{i}(v)$
- $v_{i}^{\prime}=\left|V\left(R_{i}(v)\right)\right|-\left|P_{i-1}(v)\right| i$-coordinate of v
- $p_{i}(v)$
preorder
- $t_{i}(v)$ postorder

Calculations

Compute:

- $p_{i}(v)=\left|P_{i}(v)\right|$ vertices on i-path from v
- $t_{i}(v)=\left|T_{i}(v)\right|$ vertices on i-subtree rooted at v
- $r_{i}(v)=\left|V\left(R_{i}(v)\right)\right|$ vertices in $R_{i}(v)$
- $v_{i}^{\prime}=\left|V\left(R_{i}(v)\right)\right|-\left|P_{i-1}(v)\right| i$-coordinate of v
- $p_{i}(v)$
preorder
- $t_{i}(v)$ postorder

Calculations

Compute:

- $p_{i}(v)=\left|P_{i}(v)\right|$ vertices on i-path from v
- $t_{i}(v)=\left|T_{i}(v)\right|$ vertices on i-subtree rooted at v
- $r_{i}(v)=\left|V\left(R_{i}(v)\right)\right|$ vertices in $R_{i}(v)$
- $v_{i}^{\prime}=\left|V\left(R_{i}(v)\right)\right|-\left|P_{i-1}(v)\right| i$-coordinate of v
- $p_{i}(v)$
preorder
- $t_{i}(v)$ postorder
$\square p t_{i}^{j}(v)=\sum_{u \in P_{j}(v)} t_{i}(u) \quad$ preorder
$\square r_{i}(v)=p t_{i}^{i-1}(v)+p t_{i}^{i+1}(v)-t_{i}(v)$
$\square v_{i}^{\prime}=r_{i}(v)-p_{i-1}(v)$

Literature

■ [Sch90] Schnyder "Embedding planar graphs on the grid" 1990 - original paper on Schnyder realiser method

