Visualization of graphs

Force-directed algorithms
 Drawing with physical analogies

Antonios Symvonis - Chrysanthi Raftopoulou

General Layout Problem

Input: Graph $G=(V, E)$

General Layout Problem

Input: Graph $G=(V, E)$
Output: Clear and readable straight-line drawing of G

General Layout Problem

Input: Graph $G=(V, E)$
Output: Clear and readable straight-line drawing of G

- Which aesthetic criteria would you optimize?

General Layout Problem

Input: Graph $G=(V, E)$
Output: Clear and readable straight-line drawing of G Aesthetic criteria:

- adjacent vertices are close
- non-adjacent vertices are far apart

■ edges short, straight-line, similar length
■ densely connected parts (clusters) form communities

- as few crossings as possible

■ nodes distributed evenly

General Layout Problem

Input: Graph $G=(V, E)$
Output: Clear and readable straight-line drawing of G Aesthetic criteria:
■ adjacent vertices are close

- non-adjacent vertices are far apart

■ edges short, straight-line, similar length
■ densely connected parts (clusters) form communities

- as few crossings as possible
- nodes distributed evenly

Optimization criteria partially contradict each other

Fixed edge lengths?

Input: Graph $G=(V, E)$, required edge length $\ell(e), \forall e \in E$ Output: Drawing of G which realizes all the edge lengths

Fixed edge lengths?

Input: Graph $G=(V, E)$, required edge length $\ell(e), \forall e \in E$
Output: Drawing of G which realizes all the edge lengths

Fixed edge lengths?

Input: Graph $G=(V, E)$, required edge length $\ell(e), \forall e \in E$
Output: Drawing of G which realizes all the edge lengths

NP-hard for

- uniform edge lengths in any dimension [Johnson '82]

■ uniform edge lengths in planar drawings [Eades, Wormald '90]

- edge lengths $\{1,2\}$ [Saxe '80]

Physical analogy

Idea 1.

"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system ... The vertices are placed in some initial layout

Physical analogy

Idea 1.

"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system ... The vertices are placed in some initial layout

Physical analogy

Idea 1.

"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state." [Eades '84]

Physical analogy

Idea 1.

"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state." [Eades '84]

Physical analogy

Idea 1.

"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state." [Eades '84]

Physical analogy

Idea 1.

"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state." [Eades '84]

\square adjacent vertices u and v :
u ammuno v $f_{\text {spring }}$

Physical analogy

Idea 1.

"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state." [Eades '84]

\square adjacent vertices u and v :
\mathcal{U} amwnvo v
Idea 2.
Repulsive forces.
\square non-adjacent vertices x and y :

Physical analogy

Idea 1.

"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system ... The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state." [Eades '84]
\square adjacent vertices u and v :

So-called spring-embedder algorithms that iwork according to this or similar principles are among the most frequently used graph-drawing methods in practice.

\sum_{0}^{3}

```
                                    U amwwno v
                        fspring
```

Idea 2.
Repulsive forces.
\square non-adjacent vertices x and y :

Outline

■ Spring Embedder by Eades

- Variation by Fruchterman \& Reingold
- Ways to speed up computation
- Alternative multidimensional scaling for large graphs

Spring Embedder by Eades - Algorithm

SpringEmbedder $\left(G=(V, E), p=\left(p_{v}\right)_{v \in V}, \varepsilon>0, K \in \mathbb{N}\right)$
return p

Spring Embedder by Eades - Algorithm

SpringEmbedder $\left(G=(V, E), p=\left(p_{v}\right)_{v \in V}, \varepsilon>0, K \in \mathbb{N}\right)$
return p

Spring Embedder by Eades - Algorithm

SpringEmbedder $\left(G=(V, E), p=\left(p_{v}\right)_{v \in V}, \varepsilon>0, K \in \mathbb{N}\right)$

Spring Embedder by Eades - Algorithm

SpringEmbedder $\left(G=(V, E), p=\left(p_{v}\right)_{v \in V}, \varepsilon>0, K \in \mathbb{N}\right)$

return p end layout

Spring Embedder by Eades - Algorithm

Spring Embedder by Eades - Model

Notation.

$\square \ell=\ell(e)=$ ideal spring lenght for edge e

- $p_{v}=$ position of vertex v
- $\left\|p_{u}-p_{v}\right\|=$ Euclidean distance between u and v
$\square \overrightarrow{p_{u} p_{v}}=$ unit vector pointing from u to v

Spring Embedder by Eades - Model

- repulsive force between two non-adjacent vertices u and v

$$
f_{\text {rep }}\left(p_{u}, p_{v}\right)=\frac{c_{\text {rep }}}{\left\|p_{v}-p_{u}\right\|^{2}} \cdot \overrightarrow{p_{u} p_{v}}
$$

■ attractive force between adjacent vertices u and v

$$
f_{\text {spring }}\left(p_{u}, p_{v}\right)=c_{\text {spring }} \cdot \log \frac{\left\|p_{u}-p_{v}\right\|}{\ell} \cdot \overrightarrow{p_{v} p_{u}}
$$

Notation.

■ $\ell=\ell(e)=$ ideal spring lenght for edge e

- $p_{v}=$ position of vertex v
$\square\left\|p_{u}-p_{v}\right\|=$ Euclidean distance between u and v
$\square \overrightarrow{p_{u} p_{v}}=$ unit vector pointing from u to v
- resulting displacement vector for node v

$$
F_{v}=\sum_{u:\{u, v\} \notin E} f_{\text {rep }}\left(p_{u}, p_{v}\right)+\sum_{u:\{u, v\} \in E} f_{\text {spring }}\left(p_{u}, p_{v}\right)
$$

Spring Embedder by Eades - Model

- repulsive force between two non-adjacent vertices \boldsymbol{u} and \boldsymbol{v} repulsion constant (e.g. 1.0)

$$
f_{\text {rep }}\left(p_{u}, p_{v}\right)=\frac{c_{\text {rep }}}{\left\|p_{v}-p_{u}\right\|^{2}} \cdot \overrightarrow{p_{u} p_{v}}
$$

\square attractive force between adjacent vertices u and v

$$
f_{\text {spring }}\left(p_{u}, p_{v}\right)=c_{\text {spring }} \cdot \log \frac{\left\|p_{u}-p_{v}\right\|}{\ell} \cdot \overrightarrow{p_{v} p_{u}}
$$

Notation.

■ $\ell=\ell(e)=$ ideal spring lenght for edge e

- $p_{v}=$ position of vertex v
$\square\left\|p_{u}-p_{v}\right\|=$ Euclidean distance between u and v
$\square \overrightarrow{p_{u} p_{v}}=$ unit vector pointing from u to v
- resulting displacement vector for node v

$$
F_{v}=\sum_{u:\{u, v\} \notin E} f_{\text {rep }}\left(p_{u}, p_{v}\right)+\sum_{u:\{u, v\} \in E} f_{\text {spring }}\left(p_{u}, p_{v}\right)
$$

Spring Embedder by Eades - Model

- repulsive force between two non-adjacent vertices u and v

$$
f_{\text {rep }}\left(p_{u}, p_{v}\right)=\frac{c_{\text {rep }}}{\left\|p_{v}-p_{u}\right\|^{2}} \cdot \overrightarrow{p_{u} p_{v}}
$$

■ attractive force between adjacent vertices u and v

$$
f_{\text {spring }}\left(p_{u}, p_{v}\right)=c_{\text {spring }} \cdot \log \frac{\left\|p_{u}-p_{v}\right\|}{\ell} \cdot \overrightarrow{p_{v} p_{u}}
$$

Notation.

■ $\ell=\ell(e)=$ ideal spring lenght for edge e

- $p_{v}=$ position of vertex v
$\square\left\|p_{u}-p_{v}\right\|=$ Euclidean distance between u and v
$\square \overrightarrow{p_{u} p_{v}}=$ unit vector pointing from u to v

■ resulting displacement vector for node v

$$
F_{v}=\sum_{u:\{u, v\} \notin E} f_{\text {rep }}\left(p_{u}, p_{v}\right)+\sum_{u:\{u, v\} \in E} f_{\text {spring }}\left(p_{u}, p_{v}\right)
$$

Spring Embedder by Eades - Force diagram

Spring Embedder by Eades - Force diagram

Spring Embedder by Eades - Force diagram

Spring Embedder by Eades - Discussion

Advantages.

■ very simple algorithm

- good results for small and medium-sized graphs
\square empirically good representation of symmetry and structure

Disadvantages.

\square system is not stable at the end

- converging to local minima
\square timewise $f_{\text {spring }}$ in $\mathcal{O}(|E|)$ and $f_{\text {rep }}$ in $\mathcal{O}\left(|V|^{2}\right)$

Influence.

- original paper by Peter Eades [Eades '84] got ~ 2000 citations
- basis for many further ideas

Variant by Fruchterman \& Reingold

Model.

■ repulsive force between all vertex pairs u and v

$$
f_{\text {rep }}\left(p_{u}, p_{v}\right)=\frac{\ell^{2}}{\left\|p_{v}-p_{u}\right\|} \cdot \overrightarrow{p_{u} p_{v}}
$$

\square attractive force between two adjacent vertices u and v

$$
f_{\operatorname{attr}}\left(p_{u}, p_{v}\right)=\frac{\left\|p_{u}-p_{v}\right\|^{2}}{\ell} \cdot \overrightarrow{p_{v} p_{u}}
$$

- resulting force between adjacent vertices u and v

$$
f_{\text {spring }}\left(p_{u}, p_{v}\right)=f_{\text {rep }}\left(p_{u}, p_{v}\right)+f_{\text {attr }}\left(p_{u}, p_{v}\right)
$$

Fruchtermann \& Reingold - Force diagram

Adaptability

Inertia.

- Define vertex mass $\Phi(v)=1+\operatorname{deg}(v) / 2$
- Set $f_{\text {attr }}\left(p_{u}, p_{v}\right) \leftarrow f_{\text {attr }}\left(p_{u}, p_{v}\right) \cdot 1 / \Phi(v)$

Adaptability

Inertia.

- Define vertex mass $\Phi(v)=1+\operatorname{deg}(v) / 2$
\square Set $f_{\text {attr }}\left(p_{u}, p_{v}\right) \leftarrow f_{\text {attr }}\left(p_{u}, p_{v}\right) \cdot 1 / \Phi(v)$

Gravitation.

- Define centroid $p_{\text {bary }}=1 /|V| \cdot \sum_{v \in V} p_{v}$
\square Add force $f_{\text {grav }}\left(p_{v}\right)=c_{\text {grav }} \cdot \Phi(v) \cdot \overrightarrow{p_{v} p_{\text {bary }}}$

Adaptability

Inertia.

- Define vertex mass $\Phi(v)=1+\operatorname{deg}(v) / 2$
\square Set $f_{\text {attr }}\left(p_{u}, p_{v}\right) \leftarrow f_{\text {attr }}\left(p_{u}, p_{v}\right) \cdot 1 / \Phi(v)$

Gravitation.

\square Define centroid $p_{\text {bary }}=1 /|V| \cdot \sum_{v \in V} p_{v}$
\square Add force $f_{\operatorname{grav}}\left(p_{v}\right)=c_{\text {grav }} \cdot \Phi(v) \cdot \overrightarrow{p_{v} p_{\text {bary }}}$

Restricted drawing area.

If F_{v} points beyond area R, clip vector appropriately at the border of R.

Adaptability

Inertia.

- Define vertex mass $\Phi(v)=1+\operatorname{deg}(v) / 2$
\square Set $f_{\text {attr }}\left(p_{u}, p_{v}\right) \leftarrow f_{\text {attr }}\left(p_{u}, p_{v}\right) \cdot 1 / \Phi(v)$

Gravitation.

\square Define centroid $p_{\text {bary }}=1 /|V| \cdot \sum_{v \in V} p_{v}$
\square Add force $f_{\text {grav }}\left(p_{v}\right)=c_{\text {grav }} \cdot \Phi(v) \cdot \overrightarrow{p_{v} p_{\text {bary }}}$
Restricted drawing area.
If F_{v} points beyond area R, clip vector appropriately at the border of R.

Adaptability

Inertia.

- Define vertex mass $\Phi(v)=1+\operatorname{deg}(v) / 2$
\square Set $f_{\text {attr }}\left(p_{u}, p_{v}\right) \leftarrow f_{\text {attr }}\left(p_{u}, p_{v}\right) \cdot 1 / \Phi(v)$

Gravitation.

\square Define centroid $p_{\text {bary }}=1 /|V| \cdot \sum_{v \in V} p_{v}$
\square Add force $f_{\text {grav }}\left(p_{v}\right)=c_{\text {grav }} \cdot \Phi(v) \cdot \overrightarrow{p_{v} p_{\text {bary }}}$
Restricted drawing area.
If F_{v} points beyond area R, clip vector appropriately at the border of R.

Adaptability

Inertia.

- Define vertex mass $\Phi(v)=1+\operatorname{deg}(v) / 2$
- Set $f_{\text {attr }}\left(p_{u}, p_{v}\right) \leftarrow f_{\text {attr }}\left(p_{u}, p_{v}\right) \cdot 1 / \Phi(v)$

Gravitation.

- Define centroid $p_{\text {bary }}=1 /|V| \cdot \sum_{v \in V} p_{v}$
\square Add force $f_{\operatorname{grav}}\left(p_{v}\right)=c_{\text {grav }} \cdot \Phi(v) \cdot \overrightarrow{p_{v} p_{\text {bary }}}$

Restricted drawing area.

If F_{v} points beyond area R, clip vector appropriately at the border of R.

And many more...

- magnetic orientation of edges [GD Ch. 10.4]

- other energy models
- planarity preserving
- speedups

Speeding up "convergence" by adaptive displacement $\delta_{v}(t)$

```
Reminder...
SpringEmbedder(G=(V,E),p=( (pv )
    t \leftarrow 1
    while t<K and max }\mp@subsup{\operatorname{moV}}{v\inV}{|}\mp@subsup{F}{v}{}(t)|>\varepsilon\mathrm{ do
        foreach v\inV do
        L F
        foreach v\inV do
        L p
    t\leftarrowt+1
return p
```


Speeding up "convergence" by adaptive displacement $\delta_{v}(t)$

```
Reminder...
SpringEmbedder(G = (V,E),p=( (pv)}\mp@subsup{)}{v\inV}{},\varepsilon>0,K\in\mathbb{N}
    t \leftarrow 1
    while}t<K\mathrm{ and max }\mp@subsup{\operatorname{maV}}{v}{|}|\mp@subsup{F}{v}{}(t)|>\varepsilon\mathrm{ do
        foreach}v\inV\mathrm{ do
        L Fvv
        foreach v\inV do
            L pv}\leftarrow\mp@subsup{p}{v}{}+\delta(t)\cdot\mp@subsup{F}{v}{\prime}(t
    t\leftarrowt+1 
return p
```

Speeding up "convergence" by adaptive displacement $\delta_{v}(t)$ [Frick, Ludwig, Mehldau '95]

Speeding up "convergence" by adaptive displacement $\delta_{v}(t)$ [Frick, Ludwig, Mehldau '95]

Speeding up "convergence" by adaptive displacement $\delta_{v}(t)$ [Frick, Ludwig, Mehldau '95]

Same direction.
\rightarrow increase temperature $\delta_{v}(t)$

Speeding up "convergence" by adaptive displacement $\delta_{v}(t)$ [Frick, Ludwig, Mehldau '95]

Same direction.
\rightarrow increase temperature $\delta_{v}(t)$

Speeding up "convergence" by adaptive displacement $\delta_{v}(t)$ [Frick, Ludwig, Mehldau '95]

Same direction.
\rightarrow increase temperature $\delta_{v}(t)$
Oszillation.
\rightarrow decrease temperature $\delta_{v}(t)$

Speeding up "convergence" by adaptive displacement $\delta_{v}(t)$ [Frick, Ludwig, Mehldau '95]

Same direction.
\rightarrow increase temperature $\delta_{v}(t)$
Oszillation.
\rightarrow decrease temperature $\delta_{v}(t)$

Speeding up "convergence" by adaptive displacement $\delta_{v}(t)$

 [Frick, Ludwig, Mehldau '95]

Same direction.
\rightarrow increase temperature $\delta_{v}(t)$
Oszillation.
\rightarrow decrease temperature $\delta_{v}(t)$
Rotation.
\square count rotations

- if applicable
\rightarrow decrease temperature $\delta_{v}(t)$

Speeding up "convergence" via grids

[Fruchterman \& Reingold '91]

Speeding up "convergence" via grids

 [Fruchterman \& Reingold '91]

Speeding up "convergence" via grids

[Fruchterman \& Reingold '91]

- divide plane into grid

Speeding up "convergence" via grids

[Fruchterman \& Reingold '91]

■ divide plane into grid

- consider repelling forces only to vertices in neighboring cells

Speeding up "convergence" via grids

[Fruchterman \& Reingold '91]

- divide plane into grid
- consider repelling forces only to vertices in neighboring cells
- and only if distance is less than some max distance

Speeding up "convergence" via grids

[Fruchterman \& Reingold '91]

- divide plane into grid
- consider repelling forces only to vertices in neighboring cells
- and only if distance is less than some max distance Discussion.
- good idea to improve runtime
- worst-case has not improved
- might introduce oszillation and thus a quality loss

Speeding up with quad trees

[Barnes, Hut '86]

Speeding up with quad trees

[Barnes, Hut '86]

Speeding up with quad trees

[Barnes, Hut '86]

Speeding up with quad trees

[Barnes, Hut '86]

Speeding up with quad trees

[Barnes, Hut '86]

Speeding up with quad trees

[Barnes, Hut '86]

Speeding up with quad trees

[Barnes, Hut '86]

Speeding up with quad trees

[Barnes, Hut '86]

$$
f_{\text {rep }}\left(R_{i}, p_{u}\right)=\left|R_{i}\right| \cdot f_{\text {rep }}\left(\sigma_{R_{i}}, p_{u}\right)
$$

Speeding up with quad trees

[Barnes, Hut '86]

$$
f_{\text {rep }}\left(R_{i}, p_{u}\right)=\left|R_{i}\right| \cdot f_{\text {rep }}\left(\sigma_{R_{i}}, p_{u}\right)
$$

Speeding up with quad trees

[Barnes, Hut '86]

$$
f_{\text {rep }}\left(R_{i}, p_{u}\right)=\left|R_{i}\right| \cdot f_{\text {rep }}\left(\sigma_{R_{i}}, p_{u}\right)
$$

Speeding up with quad trees

[Barnes, Hut '86]

$f_{\text {rep }}\left(R_{i}, p_{u}\right)=\left|R_{i}\right| \cdot f_{\text {rep }}\left(\sigma_{R_{i}}, p_{u}\right)$
for each child R_{i} of a vertex on path from u to R_{0}

Multidimensional scaling

- Force-directed method reaches its limitations for large graphs

Multidimensional scaling

■ Force-directed method reaches its limitations for large graphs Idea.
Adapt the classical approach multidimensional scaling (MDS):
■ MDS is a technique to visualise similarity among a set of objects

- Input is a distance matric D with $d_{i j} \sim$ dissimilarity between objects i and j
■ We search for points $x_{1}, \ldots, x_{n} \in \mathbb{R}^{2}$ such that

$$
\left\|x_{i}-x_{j}\right\| \approx d_{i j}
$$

Multidimensional scaling

- Force-directed method reaches its limitations for large graphs Idea.
Adapt the classical approach multidimensional scaling (MDS):
\square MDS is a technique to visualise similarity among a set of objects
- Input is a distance matric D with $d_{i j} \sim$ dissimilarity between objects i and j
- We search for points $x_{1}, \ldots, x_{n} \in \mathbb{R}^{2}$ such that

$$
\left\|x_{i}-x_{j}\right\| \approx d_{i j}
$$

For our drawing, how do we define the dissimilarity between two vertices?

Multidimensional scaling

- Force-directed method reaches its limitations for large graphs Idea.
Adapt the classical approach multidimensional scaling (MDS):
\square MDS is a technique to visualise similarity among a set of objects
- Input is a distance matric D with $d_{i j} \sim$ dissimilarity between objects i and j
- We search for points $x_{1}, \ldots, x_{n} \in \mathbb{R}^{2}$ such that

$$
\left\|x_{i}-x_{j}\right\| \approx d_{i j}
$$

For our drawing, how do we define the dissimilarity between two vertices?

Multidimensional scaling

- Force-directed method reaches its limitations for large graphs Idea.
Adapt the classical approach multidimensional scaling (MDS):
■ MDS is a technique to visualise similarity among a set of objects
- Input is a distance matric D with $d_{i j} \sim$ dissimilarity between objects i and j
■ We search for points $x_{1}, \ldots, x_{n} \in \mathbb{R}^{2}$ such that

$$
\left\|x_{i}-x_{j}\right\| \approx d_{i j}
$$

For our drawing, how do we define the dissimilarity between two vertices?
■ Set $d_{u v}$ as the distance of u and v in G in terms of a shortest path between them.

Multidimensional scaling

Multidimensional scaling

Literature

Main sources:

- [GD Ch. 10] Force-Directed Methods

■ [DG Ch. 4] Drawing on Physical Analogies
Referenced papers:
■ [Johnson 1982] The NP-completeness column: An ongoing guide

- [Eades, Wormald 1990] Fixed edge-length graph drawing is

■ [Saxe 1980] Two papers on graph embedding problems NP-hard

- [Eades 1984] A heuristic for graph drawing

■ [Fruchterman, Reingold 1991] Graph drawing by force-directed placement
■ [Frick, Ludwig, Mehldau 1994] A fast adaptive layout algorithm for undirected graphs

