Visualisation of graphs

Hierarchical layouts

Sugiyama framework

Antonios Symvonis • Chrysanthi Raftopoulou Fall semester 2020

The original slides of this presentation were created by researchers at Karlsruhe Institute of Technology (KIT), TU Wien, U Wuerzburg, U Konstanz, The original presentation was modified/updated by A. Symvonis and C. Raftopoulou

Hierarchical drawings - motivation

Hierarchical drawings - motivation

Hierarchical drawing

Problem statement.

- Input: digraph $G=(V, E)$

■ Output: drawing of G that "closely" reproduces the hierarchical properties of G

Hierarchical drawing

Problem statement.

- Input: digraph $G=(V, E)$

■ Output: drawing of G that "closely" reproduces the hierarchical properties of G

Desireable properties.

Hierarchical drawing

Problem statement.

- Input: digraph $G=(V, E)$

■ Output: drawing of G that "closely" reproduces the hierarchical properties of G

Desireable properties.

- vertices occur on (few) horizontal lines

Hierarchical drawing

Problem statement.

- Input: digraph $G=(V, E)$

■ Output: drawing of G that "closely" reproduces the hierarchical properties of G

Desireable properties.
\square vertices occur on (few) horizontal lines

- edges directed upwards

Hierarchical drawing

Problem statement.

- Input: digraph $G=(V, E)$

■ Output: drawing of G that "closely" reproduces the hierarchical properties of G

Desireable properties.

- vertices occur on (few) horizontal lines

■ edges directed upwards

- edge crossings minimized

Hierarchical drawing

Problem statement.

- Input: digraph $G=(V, E)$

■ Output: drawing of G that "closely" reproduces the hierarchical properties of G

Desireable properties.

\square vertices occur on (few) horizontal lines
■ edges directed upwards
■ edge crossings minimized
■ edges upward, straight, and short as possible

Hierarchical drawing

Problem statement.

- Input: digraph $G=(V, E)$

■ Output: drawing of G that "closely" reproduces the hierarchical properties of G

Desireable properties.

- vertices occur on (few) horizontal lines
- edges directed upwards

■ edge crossings minimized
■ edges upward, straight, and short as possible
■ vertices evenly spaced

Hierarchical drawing

Problem statement.

- Input: digraph $G=(V, E)$

■ Output: drawing of G that "closely" reproduces the hierarchical properties of G

Desireable properties.

\square vertices occur on (few) horizontal lines

- edges directed upwards

■ edge crossings minimized
■ edges upward, straight, and short as possible

- vertices evenly spaced

Criteria can be contradictory!

Hierarchical drawing - applications

Hierarchical drawing - applications

Hierarchical drawing - applications

Classical approach - Sugiyama framework [Sugiyama, Tagawa, Toda '81]

Input

Classical approach - Sugiyama framework

 [Sugiyama, Tagawa, Toda '81]Input \longrightarrow Cycle breaking

Classical approach - Sugiyama framework

 [Sugiyama, Tagawa, Toda '81]

Classical approach - Sugiyama framework

 [Sugiyama, Tagawa, Toda '81]Input \longrightarrow Cycle breaking

Classical approach - Sugiyama framework

 [Sugiyama, Tagawa, Toda '81]Input \longrightarrow Cycle breaking

Classical approach - Sugiyama framework

 [Sugiyama, Tagawa, Toda '81]

Step 1: Cycle breaking

Approach.

- Find minimum set E^{\star} of edges which are not upwards.
- Remove E^{\star} and insert reversed edges.

Step 1: Cycle breaking

Approach.

■ Find minimum set E^{\star} of edges which are not upwards.
■ Remove E^{\star} and insert reversed edges.
Problem Minimum Feedback Arc Set(FAS).
■ Input: \quad directed graph $G=(V, E)$
■ Output: $\quad \min$. set $E^{\star} \subseteq E$, so that $G-E^{\star}$ acyclic

Step 1: Cycle breaking

Approach.

■ Find minimum set E^{\star} of edges which are not upwards.
■ Remove E^{\star} and insert reversed edges.
Problem Minimum Feedback b/c $\operatorname{Set}(\mathbf{F} \boldsymbol{N} \mathbf{S})$.
■ Input: directed graph $G=(V, E)$
■ Output: $\quad \min$. set $E^{\star} \subseteq E$, so that $G E^{\star}$ acyclic $G-E^{\star}+E_{r}^{\star}$

Step 1: Cycle breaking

Approach.

■ Find minimum set E^{\star} of edges which are not upwards.
■ Remove E^{\star} and insert reversed edges.
Problem Minimum Feedback /hc $\operatorname{Set}(\mathrm{F} / \mathbf{S})$.
■ Input: directed graph $G=(V, E)$
■ Output: $\quad \min$. set $E^{\star} \subseteq E$, so that $G E^{\star}$ acyclic $G-E^{\star}+E_{r}^{\star}$
. . NP-hard :-(

Step 1: Cycle breaking

Problem Minimum Feedback Arc Set(FAS).
\square Input: directed graph $G=(V, E)$
■ Output: min. set $E^{\star} \subseteq E$, so that $G-E^{\star}$ acyclic

Step 1: Cycle breaking

Problem Minimum Feedback Arc Set(FAS).

- Input: directed graph $G=(V, E)$

■ Output: $\quad \min$. set $E^{\star} \subseteq E$, so that $G-E^{\star}$ acyclic

Step 1: Cycle breaking

Problem Minimum Feedback Arc Set(FAS).

- Input: directed graph $G=(V, E)$

■ Output: $\quad \min$. set $E^{\star} \subseteq E$, so that $G-E^{\star}$ acyclic

$$
G-E^{\star}+E_{r}^{\star} \text { not acyclic }
$$

Step 1: Cycle breaking

Problem Minimum Feedback Arc Set(FAS).

- Input: directed graph $G=(V, E)$
- Output: min. set $E^{\star} \subseteq E$, so that $G-E^{\star}$ acyclic

$$
G-E^{\star}+E_{\gamma}^{\star} \text { not acyclic }
$$

Problem Minimum Feedback $\operatorname{Set}(F S)$.

- Input: directed graph $G=(V, E)$

■ Output: min. set $E^{\star} \subseteq E$, so that $G-E^{\star}+E_{r}^{\star}$ acyclic

Step 1: Cycle breaking

Problem Minimum Feedback Arc Set(FAS).

- Input: directed graph $G=(V, E)$

■ Output: min. set $E^{\star} \subseteq E$, so that $G-E^{\star}$ acyclic

$$
G-E^{\star}+E_{r}^{\star} \text { not acyclic }
$$

Problem Minimum Feedback $\operatorname{Set}(F S)$.

■ Input: directed graph $G=(V, E)$
\square Output: min. set $E^{\star} \subseteq E$, so that $G-E^{\star}+E_{r}^{\star}$ acyclic

Heuristric 1

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph $G=(V, E)$)
$E^{\prime} \leftarrow \varnothing$
foreach $v \in V$ do
if $\left|N^{\rightarrow}(v)\right| \geq\left|N^{\leftarrow}(v)\right|$ then
$E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$
else

$$
E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v)
$$

remove v and $N(v)$ from G.
return $\left(V, E^{\prime}\right)$

$$
\begin{aligned}
N^{\rightarrow}(v) & :=\{(v, u) \mid(v, u) \in E\} \\
N^{\leftarrow}(v) & :=\{(u, v) \mid(u, v) \in E\} \\
N(v) & :=N^{\rightarrow}(v) \cup N^{\leftarrow}(v)
\end{aligned}
$$

Heuristric 1

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph $G=(V, E)$)

$$
E^{\prime} \leftarrow \varnothing
$$

foreach $v \in V$ do
if $\left|N^{\rightarrow}(v)\right| \geq\left|N^{\leftarrow}(v)\right|$ then
$E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$
else

$$
E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v)
$$

remove v and $N(v)$ from G. return (V, E^{\prime})

- $G^{\prime}=\left(V, E^{\prime}\right)$ is a DAG

$$
\begin{aligned}
N^{\rightarrow}(v) & :=\{(v, u) \mid(v, u) \in E\} \\
N^{\leftarrow}(v) & :=\{(u, v) \mid(u, v) \in E\} \\
N(v) & :=N^{\rightarrow}(v) \cup N^{\leftarrow}(v)
\end{aligned}
$$

Heuristric 1

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph $G=(V, E)$)

$$
E^{\prime} \leftarrow \varnothing
$$

foreach $v \in V$ do
if $\left|N^{\rightarrow}(v)\right| \geq\left|N^{\leftarrow}(v)\right|$ then $E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$
else

$$
E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v)
$$

remove v and $N(v)$ from G. return $\left(V, E^{\prime}\right)$

■ $G^{\prime}=\left(V, E^{\prime}\right)$ is a DAG

Heuristric 1

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph $G=(V, E)$)

$$
E^{\prime} \leftarrow \varnothing
$$

foreach $v \in V$ do
if $\left|N^{\rightarrow}(v)\right| \geq\left|N^{\leftarrow}(v)\right|$ then $E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$
else

$$
E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v)
$$

remove v and $N(v)$ from G. return (V, E^{\prime})

- $G^{\prime}=\left(V, E^{\prime}\right)$ is a DAG

Heuristric 1

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph $G=(V, E)$)

$$
E^{\prime} \leftarrow \varnothing
$$

foreach $v \in V$ do
if $\left|N^{\rightarrow}(v)\right| \geq\left|N^{\leftarrow}(v)\right|$ then $E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$
else

$$
E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v)
$$

remove v and $N(v)$ from G. return $\left(V, E^{\prime}\right)$

■ $G^{\prime}=\left(V, E^{\prime}\right)$ is a DAG

$$
\begin{aligned}
N^{\rightarrow}(v) & :=\{(v, u) \mid(v, u) \in E\} \\
N^{\leftarrow}(v) & :=\{(u, v) \mid(u, v) \in E\} \\
N(v) & :=N^{\rightarrow}(v) \cup N^{\leftarrow}(v)
\end{aligned}
$$

Heuristric 1

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph $G=(V, E)$)

$$
E^{\prime} \leftarrow \varnothing
$$

foreach $v \in V$ do
if $\left|N^{\rightarrow}(v)\right| \geq\left|N^{\leftarrow}(v)\right|$ then $E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$
else

$$
E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v)
$$

remove v and $N(v)$ from G. return $\left(V, E^{\prime}\right)$
$\square G^{\prime}=\left(V, E^{\prime}\right)$ is a DAG
■ we create an order on V

$$
\begin{aligned}
N^{\rightarrow}(v) & :=\{(v, u) \mid(v, u) \in E\} \\
N^{\leftarrow}(v) & :=\{(u, v) \mid(u, v) \in E\} \\
N(v) & :=N^{\rightarrow}(v) \cup N^{\leftarrow}(v)
\end{aligned}
$$

Heuristric 1

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph $G=(V, E)$)

$$
E^{\prime} \leftarrow \varnothing
$$

foreach $v \in V$ do
if $\left|N^{\rightarrow}(v)\right| \geq\left|N^{\leftarrow}(v)\right|$ then $E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$
else

$$
E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v)
$$

remove v and $N(v)$ from G. return $\left(V, E^{\prime}\right)$

- $G^{\prime}=\left(V, E^{\prime}\right)$ is a DAG

■ we create an order on V
■ $E \backslash E^{\prime}$ is a feedback arc set

$$
\begin{aligned}
N^{\rightarrow}(v) & :=\{(v, u) \mid(v, u) \in E\} \\
N^{\leftarrow}(v) & :=\{(u, v) \mid(u, v) \in E\} \\
N(v) & :=N^{\rightarrow}(v) \cup N^{\leftarrow}(v)
\end{aligned}
$$

Heuristric 1

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph $G=(V, E)$)

$$
E^{\prime} \leftarrow \varnothing
$$

foreach $v \in V$ do
if $\left|N^{\rightarrow}(v)\right| \geq\left|N^{\leftarrow}(v)\right|$ then $E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$
else

$$
E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v)
$$

remove v and $N(v)$ from G. return $\left(V, E^{\prime}\right)$

- $G^{\prime}=\left(V, E^{\prime}\right)$ is a DAG

■ we create an order on V
■ $E \backslash E^{\prime}$ is a feedback arc set

$$
\begin{aligned}
N^{\rightarrow}(v) & :=\{(v, u) \mid(v, u) \in E\} \\
N^{\leftarrow}(v) & :=\{(u, v) \mid(u, v) \in E\} \\
N(v) & :=N^{\rightarrow}(v) \cup N^{\leftarrow}(v)
\end{aligned}
$$

Heuristric 1

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph $G=(V, E)$)

$$
E^{\prime} \leftarrow \varnothing
$$

foreach $v \in V$ do
if $\left|N^{\rightarrow}(v)\right| \geq\left|N^{\leftarrow}(v)\right|$ then $E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$
else

$$
E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v)
$$

remove v and $N(v)$ from G. return $\left(V, E^{\prime}\right)$
$\square G^{\prime}=\left(V, E^{\prime}\right)$ is a DAG
■ we create an order on V
■ $E \backslash E^{\prime}$ is a feedback arc set

$$
\begin{aligned}
N^{\rightarrow}(v) & :=\{(v, u) \mid(v, u) \in E\} \\
N^{\leftarrow}(v) & :=\{(u, v) \mid(u, v) \in E\} \\
N(v) & :=N^{\rightarrow}(v) \cup N^{\leftarrow}(v)
\end{aligned}
$$

Heuristric 1

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph $G=(V, E)$)

```
E ^ { \prime } \leftarrow \varnothing
```

foreach $v \in V$ do
if $\left|N^{\rightarrow}(v)\right| \geq\left|N^{\leftarrow}(v)\right|$ then $E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$
else

$$
L E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow} \leftarrow(v)
$$

remove v and $N(v)$ from G. return $\left(V, E^{\prime}\right)$

- $G^{\prime}=\left(V, E^{\prime}\right)$ is a DAG

■ we create an order on V

- $E \backslash E^{\prime}$ is a feedback arc set

$$
\begin{aligned}
N^{\rightarrow}(v) & :=\{(v, u) \mid(v, u) \in E\} \\
N^{\leftarrow}(v) & :=\{(u, v) \mid(u, v) \in E\} \\
N(v) & :=N^{\rightarrow}(v) \cup N^{\leftarrow}(v)
\end{aligned}
$$

■ Time: $\mathcal{O}(|V|+|E|)$
■ Quality guarantee: $\left|E^{\prime}\right| \geq$

Heuristric 1

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph $G=(V, E)$)

```
E ^ { \prime } \leftarrow \varnothing
```

foreach $v \in V$ do
if $\left|N^{\rightarrow}(v)\right| \geq\left|N^{\leftarrow}(v)\right|$ then $E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$
else

$$
L E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow} \leftarrow(v)
$$

remove v and $N(v)$ from G. return $\left(V, E^{\prime}\right)$

- $G^{\prime}=\left(V, E^{\prime}\right)$ is a DAG

■ we create an order on V
■ $E \backslash E^{\prime}$ is a feedback arc set

$$
\begin{aligned}
N^{\rightarrow}(v) & :=\{(v, u) \mid(v, u) \in E\} \\
N^{\leftarrow}(v) & :=\{(u, v) \mid(u, v) \in E\} \\
N(v) & :=N^{\rightarrow}(v) \cup N^{\leftarrow}(v)
\end{aligned}
$$

■ Time: $\mathcal{O}(|V|+|E|)$
■ Quality guarantee: $\left|E^{\prime}\right| \geq|E| / 2$

Heuristric 1

$$
\begin{aligned}
& \text { [Berger, Shor '90] } \\
& \text { GreedyMakeAcyclic(Digraph } G=(V, E) \text {) } \\
& E^{\prime} \leftarrow \varnothing \\
& \text { foreach } v \in V \text { do } \\
& \text { if }\left|N^{\prime} \rightarrow(v)\right| \geq\left|N^{\leftarrow}(v)\right| \text { then } \\
& \begin{array}{l}
E^{\prime} \\
\leftarrow E^{\prime} \cup N^{\prime}(v)
\end{array} \\
& \text { else } \\
& \begin{array}{l}
E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v) \\
\text { remove } v \text { and } N(v) \text { from } G .
\end{array} \\
& \text { return }\left(V, E^{\prime}\right)
\end{aligned}
$$

Heuristric 1

$$
\begin{aligned}
& \text { [Berger, Shor '90] } \\
& \text { GreedyMakeAcyclic (Digraph } G=(V, E) \text {) } \\
& E^{\prime} \leftarrow \varnothing \\
& \text { foreach } v \in V \text { do } \\
& \text { if }\left|N^{\rightarrow}(v)\right| \geq\left|N^{\leftarrow}(v)\right| \text { then } \\
& \quad E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v) \\
& \text { else } \\
& \begin{array}{l}
E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v) \\
\text { remove } v \text { and } N(v) \text { from } G .
\end{array} \\
& \text { return }\left(V, E^{\prime}\right)
\end{aligned}
$$

Heuristric 1

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph $G=(V, E)$)
$E^{\prime} \leftarrow \varnothing$
foreach $v \in V$ do
if $\left|N^{\rightarrow}(v)\right| \geq\left|N^{\leftarrow}(v)\right|$ then
$E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$
else

$$
E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v)
$$

remove v and $N(v)$ from G. return (V, E^{\prime})

Heuristric 1

$$
\begin{aligned}
& \text { [Berger, Shor '90] } \\
& \text { GreedyMakeAcyclic(Digraph } G=(V, E) \text {) } \\
& E^{\prime} \leftarrow \varnothing \\
& \text { foreach } v \in V \text { do } \\
& \text { if }\left|N^{\rightarrow}(v)\right| \geq\left|N^{\leftarrow}(v)\right| \text { then } \\
& \begin{array}{l}
E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v) \\
\text { else } \\
\quad E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v) \\
\text { remove } v \text { and } N(v) \text { from } G .
\end{array} \\
& \text { return }\left(V, E^{\prime}\right)
\end{aligned}
$$

Heuristric 1

$$
\begin{aligned}
& \text { [Berger, Shor '90] } \\
& \text { GreedyMakeAcyclic (Digraph } G=(V, E) \text {) } \\
& E^{\prime} \leftarrow \varnothing \\
& \text { foreach } v \in V \text { do } \\
& \text { if }\left|N^{\rightarrow}(v)\right| \geq\left|N^{\leftarrow}(v)\right| \text { then } \\
& \quad E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v) \\
& \text { else } \\
& \begin{array}{l}
E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v) \\
\text { remove } v \text { and } N(v) \text { from } G .
\end{array} \\
& \text { return }\left(V, E^{\prime}\right)
\end{aligned}
$$

Heuristric 1

```
[Berger, Shor '90]
GreedyMakeAcyclic(Digraph G=(V,E))
E ^ { \prime } \leftarrow \varnothing
foreach v\inV do
if }|\mp@subsup{N}{}{->}(v)|\geq|\mp@subsup{N}{}{\leftarrow}(v)|\mathrm{ then
E ^ { \prime } \leftarrow E ^ { \prime } \cup N \rightarrow ( v )
    else
        E ^ { \prime } \leftarrow E ^ { \prime } \cup N ^ { \leftarrow } ( v )
    remove v and N(v) from G.
return (V, E')
```


Heuristric 1

```
[Berger, Shor '90]
GreedyMakeAcyclic(Digraph G=(V,E))
E ^ { \prime } \leftarrow \varnothing
foreach}v\inV\mathrm{ do
    if }|\mp@subsup{N}{}{->}(v)|\geq|\mp@subsup{N}{}{\leftarrow}(v)|\mathrm{ then
        E ^ { \prime } \leftarrow E ^ { \prime } \cup N \rightarrow ( v )
        else
            E ^ { \prime } \leftarrow E ^ { \prime } \cup N ^ { \leftarrow } ( v )
    remove v and N(v) from G.
return (V, E')
```


Heuristric 1

```
[Berger, Shor '90]
GreedyMakeAcyclic(Digraph G=(V,E))
E ^ { \prime } \leftarrow \varnothing
foreach}v\inV\mathrm{ do
    if |N->(v)|\geq|N\leftarrow
        E ^ { \prime } \leftarrow E ^ { \prime } \cup N \rightarrow ( v )
        else
        E ^ { \prime } \leftarrow E ^ { \prime } \cup N ^ { \leftarrow } ( v )
    remove v and N(v) from G.
return (V, E')
```


Heuristric 1

```
[Berger, Shor '90]
GreedyMakeAcyclic(Digraph G=(V,E))
E ^ { \prime } \leftarrow \varnothing
foreach}v\inV\mathrm{ do
    if }|\mp@subsup{N}{}{->}(v)|\geq|\mp@subsup{N}{}{\leftarrow}(v)|\mathrm{ then
        E ^ { \prime } \leftarrow E ^ { \prime } \cup N \rightarrow ( v )
        else
        E ^ { \prime } \leftarrow E ^ { \prime } \cup N ^ { \leftarrow } ( v )
        remove v and N(v) from G.
return ( }V,\mp@subsup{E}{}{\prime}\mathrm{ )
```


Heuristic 2
[Eades, Lin, Smyth '93]
$E^{\prime} \leftarrow \varnothing$
while $V \neq \varnothing$ do
while in V exists a sink v do $E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v)$ remove v and $N^{\leftarrow}(v)$

Heuristic 2

[Eades, Lin, Smyth '93]
$E^{\prime} \leftarrow \varnothing$
while $V \neq \varnothing$ do
while in V exists a sink v do
$E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v)$ remove v and $N^{\leftarrow}(v)$

8
$4 \quad 7$

3

6

5

9 11

Heuristic 2
[Eades, Lin, Smyth '93]
$E^{\prime} \leftarrow \varnothing$
while $V \neq \varnothing$ do
while in V exists a sink v do
$E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v)$ remove v and $N^{\leftarrow}(v)$

6

5

2
9 11

Heuristic 2

[Eades, Lin, Smyth '93]

$E^{\prime} \leftarrow \varnothing$

while $V \neq \varnothing$ do

while in V exists a sink v do $E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v)$ remove v and $N^{\leftarrow}(v)$

6

2
9 11

Heuristic 2

[Eades, Lin, Smyth '93]

$E^{\prime} \leftarrow \varnothing$

$$
\text { while } V \neq \varnothing \text { do }
$$

while in V exists a sink v do $E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v)$ remove v and $N^{\leftarrow}(v)$

6

9 11

Heuristic 2

[Eades, Lin, Smyth '93]
$E^{\prime} \leftarrow \varnothing$
4
while $V \neq \varnothing$ do
while in V exists a sink v do $E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v)$ remove v and $N^{\leftarrow}(v)$

6

5

9 11

1

Heuristic 2

[Eades, Lin, Smyth '93]
$E^{\prime} \leftarrow \varnothing$
4
while $V \neq \varnothing$ do
while in V exists a sink v do $E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v)$ remove v and $N^{\leftarrow}(v)$

Heuristic 2

[Eades, Lin, Smyth '93]

$$
E^{\prime} \leftarrow \varnothing
$$

while $V \neq \varnothing$ do
while in V exists a sink v do $E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v)$ remove v and $N^{\leftarrow}(v)$

Heuristic 2

[Eades, Lin, Smyth '93]

$$
E^{\prime} \leftarrow \varnothing
$$

while $V \neq \varnothing$ do
while in V exists a sink v do $E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v)$ remove v and $N^{\leftarrow}(v)$

Heuristic 2

4

2

Heuristic 2

```
[Eades, Lin, Smyth '93]
\(E^{\prime} \leftarrow \varnothing\)
while \(V \neq \varnothing\) do
    while in \(V\) exists a sink \(v\) do
        \(E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v)\)
        remove \(v\) and \(N^{\leftarrow}(v)\)
```

4

Remove all isolated vertices from V

Heuristic 2

```
[Eades, Lin, Smyth '93]
\(E^{\prime} \leftarrow \varnothing\)
while \(V \neq \varnothing\) do
    while in \(V\) exists a sink \(v\) do
        \(E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v)\)
        remove \(v\) and \(N^{\leftarrow}(v)\)
```

Remove all isolated vertices from V

Heuristic 2

```
[Eades, Lin, Smyth '93]
    E ^ { \prime } \leftarrow \varnothing
while V\not=\varnothing do
    while in V exists a sink v do
        E ^ { \prime } \leftarrow E ^ { \prime } \cup N ^ { \leftarrow } ( v )
        remove v and N
```

 Remove all isolated vertices from \(V\)
 while in V exists a source v do
$E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$
remove v and $N^{\rightarrow}(v)$

Heuristic 2

```
[Eades, Lin, Smyth '93]
    E ^ { \prime } \leftarrow \varnothing
while V\not=\varnothing do
    while in V exists a sink v do
        E ^ { \prime } \leftarrow E ^ { \prime } \cup N ^ { \leftarrow } ( v )
        remove v and N
```

 Remove all isolated vertices from \(V\)
 while in V exists a source v do
$E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$
remove v and $N^{\rightarrow}(v)$

Heuristic 2

```
[Eades, Lin, Smyth '93]
    E ^ { \prime } \leftarrow \varnothing
while V\not=\varnothing do
    while in V exists a sink v do
        E ^ { \prime } \leftarrow E ^ { \prime } \cup N ^ { \leftarrow } ( v )
        remove v and N
```

 Remove all isolated vertices from \(V\)
 while in V exists a source v do
$E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$
remove v and $N^{\rightarrow}(v)$

Heuristic 2

$$
\begin{aligned}
& \text { [Eades, Lin, Smyth '93] } \\
& E^{\prime} \leftarrow \varnothing \\
& \text { while } V \neq \varnothing \text { do } \\
& \qquad \begin{array}{l}
\text { while in } V \text { exists a sink } v \text { do } \\
E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v) \\
\text { remove } v \text { and } N^{\leftarrow}(v)
\end{array}
\end{aligned}
$$

Remove all isolated vertices from V
while in V exists a source v do
$E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$
remove v and $N^{\rightarrow}(v)$

if $V \neq \varnothing$ then

let $v \in V$ such that $\left|N^{\rightarrow}(v)\right|-\left|N^{\leftarrow}(v)\right|$ maximal; $E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$ remove v and $N(v)$

Heuristic 2

$$
\begin{aligned}
& \text { [Eades, Lin, Smyth '93] } \\
& E^{\prime} \leftarrow \varnothing \\
& \text { while } V \neq \varnothing \text { do } \\
& \qquad \begin{array}{l}
\text { while in } V \text { exists a sink } v \text { do } \\
E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v) \\
\text { remove } v \text { and } N^{\leftarrow}(v)
\end{array}
\end{aligned}
$$

Remove all isolated vertices from V
while in V exists a source v do $E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$ remove v and $N^{\rightarrow}(v)$

if $V \neq \varnothing$ then
let $v \in V$ such that $\left|N^{\rightarrow}(v)\right|-\left|N^{\leftarrow}(v)\right|$ maximal; $E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$ remove v and $N(v)$

Heuristic 2

$$
\begin{aligned}
& \text { [Eades, Lin, Smyth '93] } \\
& E^{\prime} \leftarrow \varnothing \\
& \text { while } V \neq \varnothing \text { do } \\
& \qquad \begin{array}{l}
\text { while in } V \text { exists a sink } v \text { do } \\
E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v) \\
\text { remove } v \text { and } N^{\leftarrow}(v)
\end{array}
\end{aligned}
$$

Remove all isolated vertices from V
while in V exists a source v do $E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$ remove v and $N^{\rightarrow}(v)$
if $V \neq \varnothing$ then

let $v \in V$ such that $\left|N^{\rightarrow}(v)\right|-\left|N^{\leftarrow}(v)\right|$ maximal; $E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$ remove v and $N(v)$

Heuristic 2

$$
\begin{aligned}
& \text { [Eades, Lin, Smyth '93] } \\
& E^{\prime} \leftarrow \varnothing \\
& \text { while } V \neq \varnothing \text { do } \\
& \qquad \begin{array}{l}
\text { while in } V \text { exists a sink } v \text { do } \\
E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v) \\
\text { remove } v \text { and } N^{\leftarrow}(v)
\end{array}
\end{aligned}
$$

Remove all isolated vertices from V

```
while in V exists a source v do
```

 \(E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)\)
 remove \(v\) and \(N^{\rightarrow}(v)\)
 if $V \neq \varnothing$ then

let $v \in V$ such that $\left|N^{\rightarrow}(v)\right|-\left|N^{\leftarrow}(v)\right|$ maximal; $E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$ remove v and $N(v)$

Heuristic 2

$$
\begin{aligned}
& \text { [Eades, Lin, Smyth '93] } \\
& E^{\prime} \leftarrow \varnothing \\
& \text { while } V \neq \varnothing \text { do } \\
& \qquad \begin{array}{l}
\text { while in } V \text { exists a sink } v \text { do } \\
E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v) \\
\text { remove } v \text { and } N^{\leftarrow}(v)
\end{array}
\end{aligned}
$$

Remove all isolated vertices from V
while in V exists a source v do $E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$ remove v and $N^{\rightarrow}(v)$
if $V \neq \varnothing$ then

let $v \in V$ such that $\left|N^{\rightarrow}(v)\right|-\left|N^{\leftarrow}(v)\right|$ maximal; $E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$ remove v and $N(v)$

Heuristic 2

$$
\begin{aligned}
& \text { [Eades, Lin, Smyth '93] } \\
& E^{\prime} \leftarrow \varnothing \\
& \text { while } V \neq \varnothing \text { do } \\
& \qquad \begin{array}{l}
\text { while in } V \text { exists a sink } v \text { do } \\
E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v) \\
\text { remove } v \text { and } N^{\leftarrow}(v)
\end{array}
\end{aligned}
$$

Remove all isolated vertices from V
while in V exists a source v do $E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$ remove v and $N^{\rightarrow}(v)$
if $V \neq \varnothing$ then

let $v \in V$ such that $\left|N^{\rightarrow}(v)\right|-\left|N^{\leftarrow}(v)\right|$ maximal; $E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$ remove v and $N(v)$

Heuristic 2

$$
\begin{aligned}
& \text { [Eades, Lin, Smyth '93] } \\
& E^{\prime} \leftarrow \varnothing \\
& \text { while } V \neq \varnothing \text { do } \\
& \qquad \begin{array}{l}
\text { while in } V \text { exists a sink } v \text { do } \\
E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v) \\
\text { remove } v \text { and } N^{\leftarrow}(v)
\end{array}
\end{aligned}
$$

Remove all isolated vertices from V
while in V exists a source v do $E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$ remove v and $N^{\rightarrow}(v)$

if $V \neq \varnothing$ then

let $v \in V$ such that $\left|N^{\rightarrow}(v)\right|-\left|N^{\leftarrow}(v)\right|$ maximal; $E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$ remove v and $N(v)$

Heuristic 2

$$
\begin{aligned}
& \text { [Eades, Lin, Smyth '93] } \\
& E^{\prime} \leftarrow \varnothing \\
& \text { while } V \neq \varnothing \text { do } \\
& \qquad \begin{array}{l}
\text { while in } V \text { exists a sink } v \text { do } \\
E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v) \\
\text { remove } v \text { and } N^{\leftarrow}(v)
\end{array}
\end{aligned}
$$

Remove all isolated vertices from V
while in V exists a source v do $E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$ remove v and $N^{\rightarrow}(v)$

if $V \neq \varnothing$ then

let $v \in V$ such that $\left|N^{\rightarrow}(v)\right|-\left|N^{\leftarrow}(v)\right|$ maximal; $E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$ remove v and $N(v)$

Heuristic 2

$$
\begin{aligned}
& \text { [Eades, Lin, Smyth '93] } \\
& E^{\prime} \leftarrow \varnothing \\
& \text { while } V \neq \varnothing \text { do } \\
& \qquad \begin{array}{l}
\text { while in } V \text { exists a sink } v \text { do } \\
E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v) \\
\text { remove } v \text { and } N^{\leftarrow}(v)
\end{array}
\end{aligned}
$$

Remove all isolated vertices from V

while in V exists a source v do

 $E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$ remove v and $N^{\rightarrow}(v)$
if $V \neq \varnothing$ then

let $v \in V$ such that $\left|N^{\rightarrow}(v)\right|-\left|N^{\leftarrow}(v)\right|$ maximal; $E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$ remove v and $N(v)$

Heuristic 2

$$
\begin{aligned}
& \text { [Eades, Lin, Smyth '93] } \\
& E^{\prime} \leftarrow \varnothing \\
& \text { while } V \neq \varnothing \text { do } \\
& \qquad \begin{array}{l}
\text { while in } V \text { exists a sink } v \text { do } \\
E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v) \\
\text { remove } v \text { and } N^{\leftarrow}(v)
\end{array}
\end{aligned}
$$

Remove all isolated vertices from V

while in V exists a source v do

 $E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$ remove v and $N^{\rightarrow}(v)$
if $V \neq \varnothing$ then

let $v \in V$ such that $\left|N^{\rightarrow}(v)\right|-\left|N^{\leftarrow}(v)\right|$ maximal; $E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$ remove v and $N(v)$

Heuristic 2

$$
\begin{aligned}
& \text { [Eades, Lin, Smyth '93] } \\
& E^{\prime} \leftarrow \varnothing \\
& \text { while } V \neq \varnothing \text { do } \\
& \qquad \begin{array}{l}
\text { while in } V \text { exists a sink } v \text { do } \\
E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v) \\
\text { remove } v \text { and } N^{\leftarrow}(v)
\end{array}
\end{aligned}
$$

Remove all isolated vertices from V

while in V exists a source v do

 $E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$ remove v and $N^{\rightarrow}(v)$
if $V \neq \varnothing$ then

let $v \in V$ such that $\left|N^{\rightarrow}(v)\right|-\left|N^{\leftarrow}(v)\right|$ maximal; $E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$ remove v and $N(v)$

Heuristic 2

$$
\begin{aligned}
& \text { [Eades, Lin, Smyth '93] } \\
& E^{\prime} \leftarrow \varnothing \\
& \text { while } V \neq \varnothing \text { do } \\
& \qquad \begin{array}{l}
\text { while in } V \text { exists a sink } v \text { do } \\
E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v) \\
\text { remove } v \text { and } N^{\leftarrow}(v)
\end{array}
\end{aligned}
$$

Remove all isolated vertices from V

while in V exists a source v do

 $E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$ remove v and $N^{\rightarrow}(v)$
if $V \neq \varnothing$ then

let $v \in V$ such that $\left|N^{\rightarrow}(v)\right|-\left|N^{\leftarrow}(v)\right|$ maximal; $E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$ remove v and $N(v)$

Heuristic 2

$$
\begin{aligned}
& \text { [Eades, Lin, Smyth '93] } \\
& E^{\prime} \leftarrow \varnothing \\
& \text { while } V \neq \varnothing \text { do } \\
& \qquad \begin{array}{l}
\text { while in } V \text { exists a sink } v \text { do } \\
E^{\prime} \leftarrow E^{\prime} \cup N^{\leftarrow}(v) \\
\text { remove } v \text { and } N^{\leftarrow}(v)
\end{array}
\end{aligned}
$$

Remove all isolated vertices from V

while in V exists a source v do

$E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$ remove v and $N^{\rightarrow}(v)$

if $V \neq \varnothing$ then

let $v \in V$ such that $\left|N^{\rightarrow}(v)\right|-\left|N^{\leftarrow}(v)\right|$ maximal; $E^{\prime} \leftarrow E^{\prime} \cup N^{\rightarrow}(v)$ remove v and $N(v)$

■ Time: $\mathcal{O}(|V|+|E|)$
■ Quality guarantee:
$\left|E^{\prime}\right| \geq|E| / 2+|V| / 6$

Step 2: Leveling

Problem.

■ Input: acyclic, digraph $G=(V, E)$
■ Output: Mapping $y: V \rightarrow\{1, \ldots,|V|\}$, so that for every $u v \in A, y(u)<y(v)$.

Step 2: Leveling

Problem.

■ Input: acyclic, digraph $G=(V, E)$
■ Output: Mapping $y: V \rightarrow\{1, \ldots,|V|\}$, so that for every $u v \in A, y(u)<y(v)$.
Objective is to minimize

Step 2: Leveling

Problem.

■ Input: acyclic, digraph $G=(V, E)$
■ Output: Mapping $y: V \rightarrow\{1, \ldots,|V|\}$, so that for every $u v \in A, y(u)<y(v)$.
Objective is to minimize
■ number of layers, i.e. $|y(V)|$
\square length of the longest edge, i.e. $\max _{u v \in A} y(v)-y(u)$
■ width, i.e. $\max \left\{\left|L_{i}\right| \mid 1 \leq i \leq h\right\}$

- total edge length, i.e. number of dummy vertices

Min number of layers

Algorithm.

Min number of layers

Algorithm.

- for each source q
set $y(q):=1$

Min number of layers

Algorithm.

- for each source q

$$
\text { set } y(q):=1
$$

- for each non-source v

$$
\text { set } y(v):=\max \{y(u) \mid u v \in E\}+1
$$

Min number of layers

Algorithm.

- for each source q

$$
\text { set } y(q):=1
$$

■ for each non-source v

$$
\text { set } y(v):=\max \{y(u) \mid u v \in E\}+1
$$

Observation.

■ $y(v)$

Min number of layers

Algorithm.

- for each source q

$$
\text { set } y(q):=1
$$

- for each non-source v

$$
\text { set } y(v):=\max \{y(u) \mid u v \in E\}+1
$$

Observation.

- $y(v)$ is length of the longest path from a source to v plus 1.

Min number of layers

Algorithm.

- for each source q

$$
\text { set } y(q):=1
$$

- for each non-source v

$$
\text { set } y(v):=\max \{y(u) \mid u v \in E\}+1
$$

Observation.

$\square y(v)$ is length of the longest path from a source to v plus 1.
... which is optimal!

- Can be implemented in linear time with recursive algorithm.

Example

Example

Total edge length - ILP

Can be formulated as an integer linear program:

$$
\begin{array}{rll}
\min & \sum_{(u, v) \in E}(y(v)-y(u)) & \\
\text { subject to } & y(v)-y(u) \geq 1 & \forall(u, v) \in E \\
& y(v) \geq 1 & \forall v \in V \\
& y(v) \in \mathbb{Z} & \forall v \in V
\end{array}
$$

Total edge length - ILP

Can be formulated as an integer linear program:

$$
\begin{array}{rll}
\min & \sum_{(u, v) \in E}(y(v)-y(u)) & \\
\text { subject to } & y(v)-y(u) \geq 1 & \forall(u, v) \in E \\
& y(v) \geq 1 & \forall v \in V \\
& y(v) \in \mathbb{Z} & \forall v \in V
\end{array}
$$

One can show that:

- Constraint-matrix is totally unimodular \Rightarrow Solution of the relaxed linear program is integer
■ The total edge length can be minimized in polynomial time

Width

Drawings can be very wide.

Narrower layer assignment

Problem: Leveling with a given width.
■ Input: acyclic, digraph $G=(V, E)$, width $W>0$

- Output: Partition the vertex set into a minimum number of layers such that each layer contains at most W elements.

Narrower layer assignment

Problem: Leveling with a given width.
■ Input: acyclic, digraph $G=(V, E)$, width $W>0$

- Output: Partition the vertex set into a minimum number of layers such that each layer contains at most W elements.

Problem: Precedence-Constrained Multi-Processor Scheduling

■ Input: $\quad n$ jobs with unit (1) processing time, W identical machines, and a partial ordering $<$ on the jobs.
■ Output: Schedule respecting $<$ and having minimum processing time.

Narrower layer assignment

Problem: Leveling with a given width.
■ Input: acyclic, digraph $G=(V, E)$, width $W>0$

- Output: Partition the vertex set into a minimum number of layers such that each layer contains at most W elements.

Problem: Precedence-Constrained Multi-Processor Scheduling

■ Input: n jobs with unit (1) processing time, W identical machines, and a partial ordering $<$ on the jobs.
■ Output: Schedule respecting $<$ and having minimum processing time.
\square NP-hard, $\left(2-\frac{2}{W}\right)$-Approx., no $\left(\frac{4}{3}-\varepsilon\right)$-Approx. $(W \geq 3)$.

Approximating PCMPS

■ jobs stored in a list L
(in any order, e.g., topologically sorted)

- for each time $t=1,2, \ldots$ schedule $\leq W$ available jobs
- a job in L is available when all its predecessors have been scheduled

■ as long as there are free machines and available jobs, take the first available job and assign it to a free machine

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is $W=2$.

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is $W=2$.
Output: Schedule

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is $W=2$.
Output: Schedule

M_{1}										
M_{2}										
t	1	2	3	4	5	6	7	8	9	10

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is $W=2$.
Output: Schedule

| M_{1} | 1 | | | | | | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| M_{2} | - | | | | | | | | | |
| t | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is $W=2$.
Output: Schedule

$$
\begin{array}{c|ccccccccccc}
M_{1} & 1 & 2 & & & & & & & \\
\hline M_{2} & - & 3 & & & & & & & \\
\hline t & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{array}
$$

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is $W=2$.
Output: Schedule

$$
\begin{array}{c|cccccccccccc}
M_{1} & 1 & 2 & 4 & & & & & & \\
\hline M_{2} & - & 3 & - & & & & & & \\
\hline t & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{array}
$$

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is $W=2$.
Output: Schedule

$$
\begin{array}{c|ccccccccccc}
M_{1} & 1 & 2 & 4 & 5 & & & & & & \\
\hline M_{2} & - & 3 & - & - & & & & & & \\
\hline t & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{array}
$$

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is $W=2$.
Output: Schedule

$$
\begin{array}{c|ccccccccccc}
M_{1} & 1 & 2 & 4 & 5 & 6 & & & & & \\
\hline M_{2} & - & 3 & - & - & 7 & & & & & \\
\hline t & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{array}
$$

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is $W=2$.
Output: Schedule

$$
\begin{array}{c|ccccccccccc}
M_{1} & 1 & 2 & 4 & 5 & 6 & 8 & & & & \\
\hline M_{2} & - & 3 & - & - & 7 & 9 & & & & \\
\hline t & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{array}
$$

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is $W=2$.
Output: Schedule

$$
\left.\begin{array}{c|ccccccccc}
M_{1} & 1 & 2 & 4 & 5 & 6 & 8 & A & & \\
\hline M_{2} & - & 3 & - & - & 7 & 9 & B & & \\
\hline t & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}\right)
$$

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is $W=2$.
Output: Schedule

$$
\begin{array}{c|ccccccccc}
M_{1} & 1 & 2 & 4 & 5 & 6 & 8 & \text { A C } & & \\
\hline M_{2} & - & 3 & - & - & 7 & 9 & \text { B } & \text { D } & \\
\hline t & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
$$

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is $W=2$.
Output: Schedule

$$
\begin{array}{c|ccccccccc}
M_{1} & 1 & 2 & 4 & 5 & 6 & 8 & \text { A C } & \mathrm{E} \\
\hline M_{2} & - & 3 & - & - & 7 & 9 & \text { B } & \mathrm{D} & \mathrm{~F} \\
\hline t & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
$$

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is $W=2$.
Output: Schedule

$$
\begin{array}{c|cccccccccc}
M_{1} & 1 & 2 & 4 & 5 & 6 & 8 & A & C & E & G \\
\hline M_{2} & - & 3 & - & - & 7 & 9 & \text { B } & \text { D } & \text { F } & - \\
\hline t & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{array}
$$

Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is $W=2$.
Output: Schedule

M_{1}	1	2	4	5	6	8	A C C	E	G	
M_{2}	-	3	-	-	7	9	B	D	F	-
t	1	2	3	4	5	6	7	8	9	10

Question: Good approximation factor?

Approximating PCMPS - analysis for $W=2$
Precedence graph $G_{<}$
"The art of the lower bound"

Approximating PCMPS - analysis for $W=2$
Precedence graph $G_{<}$
„The art of the lower bound"
OPT \geq

Approximating PCMPS - analysis for $W=2$
Precedence graph $G_{<}$
„The art of the lower bound"
$\mathrm{OPT} \geq\lceil n / 2\rceil$

Approximating PCMPS - analysis for $W=2$
Precedence graph $G_{<}$
„The art of the lower bound"
OPT $\geq\lceil n / 2\rceil$ and $\mathrm{OPT} \geq$

Approximating PCMPS - analysis for $W=2$

„The art of the lower bound"
OPT $\geq\lceil n / 2\rceil$ and OPT $\geq \ell:=$ Number of layers of $G_{<}$

Approximating PCMPS - analysis for $W=2$

"The art of the lower bound "
OPT $\geq\lceil n / 2\rceil$ and OPT $\geq \ell:=$ Number of layers of $G_{<}$
Goal: measure the quality of our algorithm using the lower bounds

Approximating PCMPS - analysis for $W=2$

"The art of the lower bound "
OPT $\geq\lceil n / 2\rceil$ and OPT $\geq \ell:=$ Number of layers of $G_{<}$
Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG \leq

Approximating PCMPS - analysis for $W=2$

"The art of the lower bound"
OPT $\geq\lceil n / 2\rceil$ and OPT $\geq \ell:=$ Number of layers of $G_{<}$
Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG \leq

Approximating PCMPS - analysis for $W=2$

,,The art of the lower bound"
OPT $\geq\lceil n / 2\rceil$ and OPT $\geq \ell:=$ Number of layers of $G_{<}$
Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG \leq
insertion of pauses (-) in the schedule (except the last) maps to layers of $G_{<}$

Approximating PCMPS - analysis for $W=2$

",The art of the lower bound"
OPT $\geq\lceil n / 2\rceil$ and OPT $\geq \ell:=$ Number of layers of $G_{<}$
Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG $\leq\left\lceil\frac{n+\ell}{2}\right\rceil$
insertion of pauses (-) in the schedule (except the last) maps to layers of $G_{<}$

Approximating PCMPS - analysis for $W=2$

",The art of the lower bound"
OPT $\geq\lceil n / 2\rceil$ and OPT $\geq \ell:=$ Number of layers of $G_{<}$
Goal: measure the quality of our algorithm using the lower bounds

Bound. $\mathrm{ALG} \leq\left\lceil\frac{n+\ell}{2}\right\rceil \approx$
insertion of pauses (-) in the schedule (except the last) maps to layers of $G_{<}$

Approximating PCMPS - analysis for $W=2$

,,The art of the lower bound"
OPT $\geq\lceil n / 2\rceil$ and OPT $\geq \ell:=$ Number of layers of $G_{<}$
Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG $\leq\left\lceil\frac{n+\ell}{2}\right\rceil \approx\lceil n / 2\rceil+\ell / 2$ insertion of pauses (-) in the schedule (except the last) maps to layers of $G_{<}$

Approximating PCMPS - analysis for $W=2$

",The art of the lower bound"
OPT $\geq\lceil n / 2\rceil$ and OPT $\geq \ell:=$ Number of layers of $G_{<}$
Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG $\leq\left\lceil\frac{n+\ell}{2}\right\rceil \approx\lceil n / 2\rceil+\ell / 2 \leq$
insertion of pauses $(-)$ in the schedule (except the last) maps to layers of $G_{<}$

Approximating PCMPS - analysis for $W=2$

,,The art of the lower bound"
OPT $\geq\lceil n / 2\rceil$ and OPT $\geq \ell:=$ Number of layers of $G_{<}$
Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG $\leq\left\lceil\frac{n+\ell}{2}\right\rceil \approx\lceil n / 2\rceil+\ell / 2 \leq 3 / 2 \cdot \mathrm{OPT}$
$<$ insertion of pauses (-) in the schedule (except the last) maps to layers of $G_{<}$

Approximating PCMPS - analysis for $W=2$

",The art of the lower bound"
OPT $\geq\lceil n / 2\rceil$ and OPT $\geq \ell:=$ Number of layers of $G_{<}$
Goal: measure the quality of our algorithm using the lower bounds

$$
\leq(2-1 / W) \cdot \text { OPT in general case }
$$

Bound. ALG $\leq\left\lceil\frac{n+\ell}{2}\right\rceil \approx\lceil n / 2\rceil+\ell / 2 \leq 3 / 2 \cdot$ OPT
< insertion of pauses (-) in the schedule (except the last) maps to layers of $G_{<}$

Step 3: Crossing minimization

Problem.

- Input:

Graph G, layering $y: V \rightarrow\{1, \ldots,|V|\}$

- Output: (Re-)ordering of vertices in each layer so that the number of crossings in minimized.

Step 3: Crossing minimization

Problem.

■ Input: \quad Graph G, layering $y: V \rightarrow\{1, \ldots,|V|\}$

- Output: (Re-)ordering of vertices in each layer so that the number of crossings in minimized.
- NP-hard, even for 2 layers [Garey \& Johnson '83]
■ hardly any approaches optimize over multiple layers :(

Iterative crossing reduction - idea

Observation.

The number of crossings only depends on permutations of adjacent layers.

Iterative crossing reduction - idea

Observation.

The number of crossings only depends on permutations of adjacent layers.

■ Add dummy-vertices for edges connecting "far" layers.
■ Consider adjacent layers $\left(L_{1}, L_{2}\right),\left(L_{2}, L_{3}\right), \ldots$ bottom-to-top.

- Minimize crossings by permuting L_{i+1} while keeping L_{i} fixed.

Iterative crossing reduction - algorithm

(1) choose a random permutation of L_{1}

Iterative crossing reduction - algorithm

(1) choose a random permutation of L_{1}
(2) iteratively consider adjacent layers L_{i} and L_{i+1}

Iterative crossing reduction - algorithm

(1) choose a random permutation of L_{1}
(2) iteratively consider adjacent layers L_{i} and L_{i+1}
(3) minimize crossings by permuting L_{i+1} and keeping L_{i} fixed

Iterative crossing reduction - algorithm

(1) choose a random permutation of L_{1}
(2) iteratively consider adjacent layers L_{i} and L_{i+1}
(3) minimize crossings by permuting L_{i+1} and keeping L_{i} fixed
(4) repeat steps (2)-(3) in the reverse order (starting from L_{h})

Iterative crossing reduction - algorithm

(1) choose a random permutation of L_{1}
(2) iteratively consider adjacent layers L_{i} and L_{i+1}
(3) minimize crossings by permuting L_{i+1} and keeping L_{i} fixed
(4) repeat steps (2)-(3) in the reverse order (starting from L_{h})
(5) repeat steps (2)-(4) until no further improvement is achieved

Iterative crossing reduction - algorithm

(1) choose a random permutation of L_{1}
(2) iteratively consider adjacent layers L_{i} and L_{i+1}
(3) minimize crossings by permuting L_{i+1} and keeping L_{i} fixed
(4) repeat steps (2)-(3) in the reverse order (starting from L_{h})
(5) repeat steps (2)-(4) until no further improvement is achieved
(6) repeat steps (1)-(5) with different starting permutations

Iterative crossing reduction - algorithm

(1) choose a random permutation of L_{1}
(2) iteratively consider adjacent layers L_{i} and L_{i+1}
(3) minimize crossings by permuting L_{i+1} and keeping L_{i} fixed
(4) repeat steps (2)-(3) in the reverse order (starting from L_{h})
(5) repeat steps (2)-(4) until no further improvement is achieved
(6) repeat steps (1)-(5) with different starting permutations

Iterative crossing reduction - algorithm

(1) choose a random permutation of L_{1}
(2) iteratively consider adjacent layers L_{i} and L_{i+1}
(3) minimize crossings by permuting L_{i+1} and keeping L_{i} fixed
one-sided crossing minimization
(4) repeat steps (2)-(3) in the reverse order (starting from L_{h})
(5) repeat steps (2)-(4) until no further improvement is achieved
(6) repeat steps (1)-(5) with different starting permutations

One-sided crossing minimization

Problem.

- Input:
bipartite graph $G=\left(L_{1} \cup L_{2}, E\right)$, permutation π_{1} on L_{1}
■ Output: permutation π_{2} of L_{2} minimizing the number of edge crossings.

One-sided crossing minimization

Problem.

- Input:
bipartite graph $G=\left(L_{1} \cup L_{2}, E\right)$, permutation π_{1} on L_{1}
\square Output: permutation π_{2} of L_{2} minimizing the number of edge crossings.

One-sided crossing minimization is NP-hard. [Eades \& Whitesides '94]

One-sided crossing minimization

Problem.

- Input:
bipartite graph $G=\left(L_{1} \cup L_{2}, E\right)$, permutation π_{1} on L_{1}
\square Output: permutation π_{2} of L_{2} minimizing the number of edge crossings.

One-sided crossing minimization is NP-hard. [Eades \& Whitesides '94]

Algorithms.

- barycenter heuristic
- median heuristic

■ Greedy-Switch

- ILP

Barycentre heuristic

■ Intuition: few intersections occur when vertices are close to their neighbours

Barycentre heuristic

Sugiyama et al. '81]

■ Intuition: few intersections occur when vertices are close to their neighbours

- The barycentre of u is the average x-coordinate of the neighbours of u in layer $L_{1} \quad\left[x_{1} \equiv \pi_{1}\right]$
$x_{2}(u):=\operatorname{bary}(u):=\frac{1}{\operatorname{deg}(u)} \sum_{v \in N(u)} x_{1}(v)$

Barycentre heuristic

[Sugiyama et al. '81]

■ Intuition: few intersections occur when vertices are close to their neighbours

- The barycentre of u is the average x-coordinate of the neighbours of u in layer $L_{1} \quad\left[x_{1} \equiv \pi_{1}\right]$
$x_{2}(u):=\operatorname{bary}(u):=\frac{1}{\operatorname{deg}(u)} \sum_{v \in N(u)} x_{1}(v)$
■ Vertices with the same barycentre of are offset by a small δ.

Barycentre heuristic

[Sugiyama et al. '81]

■ Intuition: few intersections occur when vertices are close to their neighbours

- The barycentre of u is the average x-coordinate of the neighbours of u in layer $L_{1} \quad\left[x_{1} \equiv \pi_{1}\right]$
$x_{2}(u):=\operatorname{bary}(u):=\frac{1}{\operatorname{deg}(u)} \sum_{v \in N(u)} x_{1}(v)$
■ Vertices with the same barycentre of are offset by a small δ.
- linear runtime
- relatively good results
- optimal if no crossings are required
- $O(\sqrt{n})$-approximation factor

Barycentre heuristic

[Sugiyama et al. '81]

- Intuition: few intersections occur when vertices are close to their neighbours
- The barycentre of u is the average x-coordinate of the neighbours of u in layer $L_{1} \quad\left[x_{1} \equiv \pi_{1}\right]$
$x_{2}(u):=\operatorname{bary}(u):=\frac{1}{\operatorname{deg}(u)} \sum_{v \in N(u)} x_{1}(v)$
- Vertices with the same barycentre of are offset by a small δ.
- linear runtime
- relatively good results
\square optimal if no crossings are required \longleftarrow exercise!
- $O(\sqrt{n})$-approximation factor

Barycentre heuristic

[Sugiyama et al. '81]

- Intuition: few intersections occur when vertices are close to their neighbours
- The barycentre of u is the average x-coordinate of the neighbours of u in layer $L_{1} \quad\left[x_{1} \equiv \pi_{1}\right]$
$x_{2}(u):=\operatorname{bary}(u):=\frac{1}{\operatorname{deg}(u)} \sum_{v \in N(u)} x_{1}(v)$
■ Vertices with the same barycentre of are offset by a small δ.
- linear runtime
- relatively good results
\square optimal if no crossings are required \longleftarrow exercise!
- $O(\sqrt{n})$-approximation factor

Barycentre heuristic

[Sugiyama et al. '81]

- Intuition: few intersections occur when vertices are close to their neighbours
- The barycentre of u is the average x-coordinate of the neighbours of u in layer $L_{1} \quad\left[x_{1} \equiv \pi_{1}\right]$
$x_{2}(u):=\operatorname{bary}(u):=\frac{1}{\operatorname{deg}(u)} \sum_{v \in N(u)} x_{1}(v)$
■ Vertices with the same barycentre of are offset by a small δ.
- linear runtime

Worst case?
u_{00}
$\underbrace{000000000000}_{k^{2}-1} \underbrace{000}_{k-1}$

Barycentre heuristic

[Sugiyama et al. '81]

- Intuition: few intersections occur when vertices are close to their neighbours
- The barycentre of u is the average x-coordinate of the neighbours of u in layer $L_{1} \quad\left[x_{1} \equiv \pi_{1}\right]$
$x_{2}(u):=\operatorname{bary}(u):=\frac{1}{\operatorname{deg}(u)} \sum_{v \in N(u)} x_{1}(v)$
\square Vertices with the same barycentre of are offset by a small δ.
- linear runtime
- relatively good results
\square optimal if no crossings are required \leftarrow exercise!
$\square O(\sqrt{n})$-approximation factor

Median heuristic

$\square\left\{v_{1}, \ldots, v_{k}\right\}:=N(u)$ with $\pi_{1}\left(v_{1}\right)<\pi_{1}\left(v_{2}\right)<\cdots<\pi_{1}\left(v_{k}\right)$

$$
x_{2}(u):=\operatorname{med}(u):= \begin{cases}0 & \text { when } N(u)=\varnothing \\ \pi_{1}\left(v_{\lceil k / 2\rceil}\right) & \text { otherwise }\end{cases}
$$

\square move vertices u und v by small δ, when $x_{2}(u)=x_{2}(v)$

Median heuristic

[Eades \& Wormald '94]

$\square\left\{v_{1}, \ldots, v_{k}\right\}:=N(u)$ with $\pi_{1}\left(v_{1}\right)<\pi_{1}\left(v_{2}\right)<\cdots<\pi_{1}\left(v_{k}\right)$

$$
x_{2}(u):=\operatorname{med}(u):= \begin{cases}0 & \text { when } N(u)=\varnothing \\ \pi_{1}\left(v_{\lceil k / 2\rceil}\right) & \text { otherwise }\end{cases}
$$

\square move vertices u und v by small δ, when $x_{2}(u)=x_{2}(v)$

- linear runtime
- relatively good results

■ optimal, if no crossings are required
■ 3-approximation factor

Median heuristic

[Eades \& Wormald '94]

$\square\left\{v_{1}, \ldots, v_{k}\right\}:=N(u)$ with $\pi_{1}\left(v_{1}\right)<\pi_{1}\left(v_{2}\right)<\cdots<\pi_{1}\left(v_{k}\right)$

$$
x_{2}(u):=\operatorname{med}(u):= \begin{cases}0 & \text { when } N(u)=\varnothing \\ \pi_{1}\left(v_{\lceil k / 2\rceil}\right) & \text { otherwise }\end{cases}
$$

- move vertices u und v by small δ, when $x_{2}(u)=x_{2}(v)$
- linear runtime
- relatively good results
- optimal, if no crossings are required
- 3-approximation factor
proof in [GD Ch 11]

Median heuristic

[Eades \& Wormald '94]

$\square\left\{v_{1}, \ldots, v_{k}\right\}:=N(u)$ with $\pi_{1}\left(v_{1}\right)<\pi_{1}\left(v_{2}\right)<\cdots<\pi_{1}\left(v_{k}\right)$

$$
x_{2}(u):=\operatorname{med}(u):= \begin{cases}0 & \text { when } N(u)=\varnothing \\ \pi_{1}\left(v_{\lceil k / 2\rceil}\right) & \text { otherwise }\end{cases}
$$

- move vertices u und v by small δ, when $x_{2}(u)=x_{2}(v)$

■ linear runtime

- relatively good results

■ optimal, if no crossings are required

- 3-approximation factor
proof in [GD Ch 11]

Median heuristic

[Eades \& Wormald '94]

$\square\left\{v_{1}, \ldots, v_{k}\right\}:=N(u)$ with $\pi_{1}\left(v_{1}\right)<\pi_{1}\left(v_{2}\right)<\cdots<\pi_{1}\left(v_{k}\right)$

$$
x_{2}(u):=\operatorname{med}(u):= \begin{cases}0 & \text { when } N(u)=\varnothing \\ \pi_{1}\left(v_{\lceil k / 2\rceil}\right) & \text { otherwise }\end{cases}
$$

\square move vertices u und v by small δ, when $x_{2}(u)=x_{2}(v)$

- linear runtime
- relatively good results
- optimal, if no crossings are required
- 3-approximation factor

Median heuristic

[Eades \& Wormald '94]

$\square\left\{v_{1}, \ldots, v_{k}\right\}:=N(u)$ with $\pi_{1}\left(v_{1}\right)<\pi_{1}\left(v_{2}\right)<\cdots<\pi_{1}\left(v_{k}\right)$

$$
x_{2}(u):=\operatorname{med}(u):= \begin{cases}0 & \text { when } N(u)=\varnothing \\ \pi_{1}\left(v_{\lceil k / 2\rceil}\right) & \text { otherwise }\end{cases}
$$

- move vertices u und v by small δ, when $x_{2}(u)=x_{2}(v)$
- linear runtime

■ relatively good results
■ optimal, if no crossings are required

- 3-approximation factor
proof in [GD Ch 11]

Greedy-switch heuristic

■ iteratively swap each adjacent node as long as crossings decrease
■ runtime $O\left(L_{2}\right)$ per iteration; at most $\left|L_{2}\right|$ iterations

- suitable as post-processing for other heuristics

Greedy-switch heuristic

■ iteratively swap each adjacent node as long as crossings decrease

■ runtime $O\left(L_{2}\right)$ per iteration; at most $\left|L_{2}\right|$ iterations
■ suitable as post-processing for other heuristics

Worst case?

Greedy-switch heuristic

■ iteratively swap each adjacent node as long as crossings decrease

- runtime $O\left(L_{2}\right)$ per iteration; at most $\left|L_{2}\right|$ iterations
- suitable as post-processing for other heuristics

Worst case?

Greedy-switch heuristic

■ iteratively swap each adjacent node as long as crossings decrease

■ runtime $O\left(L_{2}\right)$ per iteration; at most $\left|L_{2}\right|$ iterations

- suitable as post-processing for other heuristics

Worst case?

Greedy-switch heuristic

- iteratively swap each adjacent node as long as crossings decrease

■ runtime $O\left(L_{2}\right)$ per iteration; at most $\left|L_{2}\right|$ iterations

- suitable as post-processing for other heuristics

Worst case?

Greedy-switch heuristic

- iteratively swap each adjacent node as long as crossings decrease

■ runtime $O\left(L_{2}\right)$ per iteration; at most $\left|L_{2}\right|$ iterations

- suitable as post-processing for other heuristics

Worst case?

$\approx k^{2} / 4$
$\approx 2 k$

Integer linear program

[Jünger \& Mutzel, '97]

■ Constant $c_{i j}:=\#$ crossings between edges incident to v_{i} or v_{j} when $\pi_{2}\left(v_{i}\right)<\pi_{2}\left(v_{j}\right)$

Integer linear program

[Jünger \& Mutzel, '97]

■ Constant $c_{i j}:=\#$ crossings between edges incident to v_{i} or v_{j} when $\pi_{2}\left(v_{i}\right)<\pi_{2}\left(v_{j}\right)$

- Variable $x_{i j}$ for each $1 \leq i<j \leq n_{2}:=\left|L_{2}\right|$

$$
x_{i j}= \begin{cases}1 & \text { when } \pi_{2}\left(v_{i}\right)<\pi_{2}\left(v_{j}\right) \bullet \bullet \bullet \\ 0 & \text { otherwise }\end{cases}
$$

Integer linear program

[Jünger \& Mutzel, '97]

■ Constant $c_{i j}:=\#$ crossings between edges incident to v_{i} or v_{j} when $\pi_{2}\left(v_{i}\right)<\pi_{2}\left(v_{j}\right)$

- Variable $x_{i j}$ for each $1 \leq i<j \leq n_{2}:=\left|L_{2}\right|$

$$
x_{i j}= \begin{cases}1 & \text { when } \pi_{2}\left(v_{i}\right)<\pi_{2}\left(v_{j}\right) \\ 0 & \text { otherwise }\end{cases}
$$

■ The number of crossings of a permutations π_{2}

$$
\operatorname{cross}\left(\pi_{2}\right)=\sum_{i=1}^{n_{2}-1} \sum_{j=i+1}^{n_{2}}\left(c_{i j}-c_{j i}\right) x_{i j}+\underbrace{\sum_{i=1}^{n_{2}-1} \sum_{j=i+1}^{n_{2}} c_{j i}}_{\text {constant }}
$$

Integer linear program

- Minimize the number of crossings:

$$
\operatorname{minimize} \sum_{i=1}^{n_{2}-1} \sum_{j=i+1}^{n_{2}}\left(c_{i j}-c_{j i}\right) x_{i j}
$$

Integer linear program

- Minimize the number of crossings:

$$
\operatorname{minimize} \sum_{i=1}^{n_{2}-1} \sum_{j=i+1}^{n_{2}}\left(c_{i j}-c_{j i}\right) x_{i j}
$$

- Transitivity constraints:

$$
0 \leq x_{i j}+x_{j k}-x_{i k} \leq 1 \quad \text { for } 1 \leq i<j<k \leq n_{2}
$$

Integer linear program

- Minimize the number of crossings:

$$
\operatorname{minimize} \sum_{i=1}^{n_{2}-1} \sum_{j=i+1}^{n_{2}}\left(c_{i j}-c_{j i}\right) x_{i j}
$$

- Transitivity constraints:

$$
0 \leq x_{i j}+x_{j k}-x_{i k} \leq 1 \quad \text { for } 1 \leq i<j<k \leq n_{2}
$$

i.e., if $x_{i j}=1$ and $x_{j k}=1$, then $x_{i k}=1$

Integer linear program

- Minimize the number of crossings:

$$
\operatorname{minimize} \sum_{i=1}^{n_{2}-1} \sum_{j=i+1}^{n_{2}}\left(c_{i j}-c_{j i}\right) x_{i j}
$$

- Transitivity constraints:

$$
0 \leq x_{i j}+x_{j k}-x_{i k} \leq 1 \quad \text { for } 1 \leq i<j<k \leq n_{2}
$$

i.e., if $x_{i j}=\frac{1}{0}$ and $x_{j k}=1$, then $x_{i k}=\frac{1}{0}$

Integer linear program

- Minimize the number of crossings:

$$
\operatorname{minimize} \sum_{i=1}^{n_{2}-1} \sum_{j=i+1}^{n_{2}}\left(c_{i j}-c_{j i}\right) x_{i j}
$$

- Transitivity constraints:

$$
0 \leq x_{i j}+x_{j k}-x_{i k} \leq 1 \quad \text { for } 1 \leq i<j<k \leq n_{2}
$$

i.e., if $x_{i j}=1$ and $x_{j k}=1$, then $x_{i k}=1$

Properties.

■ branch-and-cut technique for DAGs of limited size
■ useful for graphs of small to medium size

- finds optimal solution
- solution in polynomial time is not guaranteed

Iterations on example

Step 4: Vertex positioning

Goal.

paths should be close to straight, vertices evenly spaced

Step 4: Vertex positioning

Goal.

paths should be close to straight, vertices evenly spaced
■ Exact: Quadratic Program (QP)
■ Heuristic: iterative approach

Quadratic Program

- Consider the path $p_{e}=\left(v_{1}, \ldots, v_{k}\right)$ of an edge $e=v_{1} v_{k}$ with dummy vertices: v_{2}, \ldots, v_{k-1}

Quadratic Program

- Consider the path $p_{e}=\left(v_{1}, \ldots, v_{k}\right)$ of an edge $e=v_{1} v_{k}$ with dummy vertices: v_{2}, \ldots, v_{k-1}
- x-coordinate of v_{i} according to the line $\overline{v_{1} v_{k}}$ (with equal spacing):

$$
\overline{x\left(v_{i}\right)}=x\left(v_{1}\right)+\frac{i-1}{k-1}\left(x\left(v_{k}\right)-x\left(v_{1}\right)\right)
$$

Quadratic Program

\square Consider the path $p_{e}=\left(v_{1}, \ldots, v_{k}\right)$ of an edge $e=v_{1} v_{k}$ with dummy vertices: v_{2}, \ldots, v_{k-1}

- x-coordinate of v_{i} according to the line $\overline{v_{1} v_{k}}$ (with equal spacing):

$$
\overline{x\left(v_{i}\right)}=x\left(v_{1}\right)+\frac{i-1}{k-1}\left(x\left(v_{k}\right)-x\left(v_{1}\right)\right)
$$

- define the deviation from the line

$$
\operatorname{dev}\left(p_{e}\right):=\sum_{i=2}^{k-1}\left(x\left(v_{i}\right)-\overline{x\left(v_{i}\right)}\right)^{2}
$$

Quadratic Program

\square Consider the path $p_{e}=\left(v_{1}, \ldots, v_{k}\right)$ of an edge $e=v_{1} v_{k}$ with dummy vertices: v_{2}, \ldots, v_{k-1}

- x-coordinate of v_{i} according to the line $\overline{v_{1} v_{k}}$ (with equal spacing):

$$
\overline{x\left(v_{i}\right)}=x\left(v_{1}\right)+\frac{i-1}{k-1}\left(x\left(v_{k}\right)-x\left(v_{1}\right)\right)
$$

- define the deviation from the line

$$
\operatorname{dev}\left(p_{e}\right):=\sum_{i=2}^{k-1}\left(x\left(v_{i}\right)-\overline{x\left(v_{i}\right)}\right)^{2}
$$

Quadratic Program

\square Consider the path $p_{e}=\left(v_{1}, \ldots, v_{k}\right)$ of an edge $e=v_{1} v_{k}$ with dummy vertices: v_{2}, \ldots, v_{k-1}

- x-coordinate of v_{i} according to the line $\overline{v_{1} v_{k}}$ (with equal spacing):

$$
\overline{x\left(v_{i}\right)}=x\left(v_{1}\right)+\frac{i-1}{k-1}\left(x\left(v_{k}\right)-x\left(v_{1}\right)\right)
$$

- define the deviation from the line

$$
\operatorname{dev}\left(p_{e}\right):=\sum_{i=2}^{k-1}\left(x\left(v_{i}\right)-\overline{x\left(v_{i}\right)}\right)^{2}
$$

Quadratic Program

\square Consider the path $p_{e}=\left(v_{1}, \ldots, v_{k}\right)$ of an edge $e=v_{1} v_{k}$ with dummy vertices: v_{2}, \ldots, v_{k-1}

- x-coordinate of v_{i} according to the line $\overline{v_{1} v_{k}}$ (with equal spacing):

$$
\overline{x\left(v_{i}\right)}=x\left(v_{1}\right)+\frac{i-1}{k-1}\left(x\left(v_{k}\right)-x\left(v_{1}\right)\right)
$$

- define the deviation from the line

$$
\operatorname{dev}\left(p_{e}\right):=\sum_{i=2}^{k-1}\left(x\left(v_{i}\right)-\overline{x\left(v_{i}\right)}\right)^{2}
$$

- Objective function: $\quad \min \sum_{e \in E} \operatorname{dev}\left(p_{e}\right)$

Quadratic Program

\square Consider the path $p_{e}=\left(v_{1}, \ldots, v_{k}\right)$ of an edge $e=v_{1} v_{k}$ with dummy vertices: v_{2}, \ldots, v_{k-1}
$\square x$-coordinate of v_{i} according to the line $\overline{v_{1} v_{k}}$ (with equal spacing):

$$
\overline{x\left(v_{i}\right)}=x\left(v_{1}\right)+\frac{i-1}{k-1}\left(x\left(v_{k}\right)-x\left(v_{1}\right)\right)
$$

- define the deviation from the line

$$
\operatorname{dev}\left(p_{e}\right):=\sum_{i=2}^{k-1}\left(x\left(v_{i}\right)-\overline{x\left(v_{i}\right)}\right)^{2}
$$

- Objective function: $\quad \min \sum_{e \in E} \operatorname{dev}\left(p_{e}\right)$

■ Constraints for all vertices v, w in the same layer with w right of $v: \quad x(w)-x(v) \geq \rho(w, v)$

Quadratic Program

\square Consider the path $p_{e}=\left(v_{1}, \ldots, v_{k}\right)$ of an edge $e=v_{1} v_{k}$ with dummy vertices: v_{2}, \ldots, v_{k-1}
$\square x$-coordinate of v_{i} according to the line $\overline{v_{1} v_{k}}$ (with equal spacing):

$$
\overline{x\left(v_{i}\right)}=x\left(v_{1}\right)+\frac{i-1}{k-1}\left(x\left(v_{k}\right)-x\left(v_{1}\right)\right)
$$

- define the deviation from the line

$$
\operatorname{dev}\left(p_{e}\right):=\sum_{i=2}^{k-1}\left(x\left(v_{i}\right)-\overline{x\left(v_{i}\right)}\right)^{2}
$$

- Objective function: $\quad \min \sum_{e \in E} \operatorname{dev}\left(p_{e}\right)$
- Constraints for all vertices v, w in the same layer with w
- QP is time-expensive
\square width can be exponential right of $v: \quad x(w)-x(v) \geq \rho(w, v)$

Iterative heuristic

- compute an initial layout

Iterative heuristic

- compute an initial layout

■ apply the following steps as long as improvements can be made:

Iterative heuristic

- compute an initial layout

■ apply the following steps as long as improvements
can be made:

1. vertex positioning,
2. edge straightening,
3. compactifying the layout width.

Example

Example

Step 5: Drawing edges

Possibility.
Substitute polylines by Bézier curves

Example

Example

Example

Classical approach - Sugiyama framework

 [Sugiyama, Tagawa, Toda '81]

Classical approach - Sugiyama framework

 [Sugiyama, Tagawa, Toda '81]

Literature

Detailed explanations of steps and proofs in
■ [GD Ch. 11] and [DG Ch. 5]
based on
■ [Sugiyama, Tagawa, Toda '81] Methods for visual understanding of hierarchical system structures
and refined with results from
■ [Berger, Shor '90] Approximation alogorithms for the maximum acyclic subgraph problem
■ [Eades, Lin, Smith '93] A fast and effective heuristic for the feedback arc set problem
■ [Garey, Johnson '83] Crossing number is NP-complete

- [Eades, Whiteside '94] Drawing graphs in two layers
- [Eades, Wormland '94] Edge crossings in drawings of bipartite graphs

■ [Jünger, Mutzel '97] 2-Layer Straightline Crossing Minimization: Performance of Exact and Heuristic Algorithms

