|
Copyright © 2022 [karmakis]
|
Project Publications/Preprints
- (A. Aretaki, E. N. Karatzas), “Random geometries for optimal control PDE problems based on
fictitious domain FEMS and cut elements”, Journal of Computational and Applied Mathematics, Vol. 412, 114-286, 2022,
doi:10.1016/j.cam.2022.114286
- (X. Zeng, G. Stabile, E. N. Karatzas, G. Scovazzi, and G. Rozza), “Embedded domain Reduced Basis Models for the shallow water hyperbolic equations with the
Shifted Boundary Method”, Computer Methods in Applied Mechanics and Engineering, 2022,
doi:2022.115143
- (A. Aretaki, E. N. Karatzas, G. Katsouleas), “Equal higher order analysis on an unfitted dG method for Stokes flow systems”,
Journal of Scientific Computing, 91, 48, 2022, doi:2006.00435
- (G. Katsouleas, E. N. Karatzas, F. Travlopanos), “Discrete Empirical Interpolation and unfitted mesh FEMs: application in PDE–constrained
optimization”, Optimization Journal, 2022, doi:10.1080/02331934.2022.2032697
- (E. N. Karatzas and G. Rozza), “A Reduced Order Model for a stable embedded boundary parametrized Cahn-Hilliard phase-field system based
on cut finite elements”, Journal of Scientific Computing, 2021, DOI:10.1007/s10915-021-01623-8
- (E. N. Karatzas, M. Nonino, F. Ballarin and G. Rozza), “A Reduced Order Cut
Finite Element method for geometrically parametrized steady and unsteady Navier–Stokes problems”,
Computers & Mathematics with Applications, 2021, doi:10.1016/j.camwa.2021.07.016
- (E. N. Karatzas, G. Stabile, L. Nouveau, G. Scovazzi, and G. Rozza), “A Reduced Order Model for embedded domain computations Based on Shifted
Boundary Method: Parametrized incompressible Navier-Stokes equations”, Computer Methods in Applied Mechanics and Engineering, 2020, doi:10.1016/j.cma.2020.113273
- (E. N. Karatzas, F. Ballarin, and G. Rozza), “Projection-based reduced order models for a cut finite element method in parametrized domains”, Computers & Mathematics with Applications, 2020, doi:10.1016/j.camwa.2019.08.003
- (K. Chrysafinos, E. N. Karatzas and D. Kostas), “Stability and Error Estimates of Fully Discrete Schemes for the Brusselator System”, SIAM Journal on Numerical Analysis, 57:2, 828-853, 2019, doi:10.1137/18M1185594
The project is funded by the Hellenic Foundation for Research and Innovation.
| |
|